我正在使用背景减法来分析室外场景的移动物体。当太阳出来时我有阴影问题。我正在使用轮廓来隔离对象。目前我只是分析轮廓的上半部分,因为阴影通常位于下半部分。
想象一下橡皮鸭的轮廓,我想要做的是找到鸭子颈部的y位置,即轮廓处于最小水平尺寸的位置。 有人可以指点我如何找到“鸭脖子”的正确方向吗?
在代码中,binary
是移动对象的阈值图像,HIGHT
和WIDTH
是图像的高度和宽度,lab
是相同的图像在LAB颜色空间中。
我想用一个函数替换half = int(h/2)
行来找到水平线的y位置以切断“鸭脖”。
_,contours,_ = cv2.findContours(binary.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
# loop over the contours
for i, cnt in enumerate(contours):
# compute the bounding box for the contour
(x, y, w, h) = cv2.boundingRect(cnt)
# reject contours outside size range
if w > 250 or w < 30 or h > 250 or h < 30 :
continue
# make sure the box is inside the frame
if x <= 0 or y <= 0 or x+w >= (WIDTH -1) or y+h >= (HIGHT -1):
continue
# isolate feature
half = int(h/2)
roi = lab[y:y+half, x:x+w]
mask = binary[y:y+half, x:x+w]
# calculate the mean of the colour
mean = cv2.mean(roi, mask = mask)
# note: mean is L a b
L = int(mean[0])
a = int(mean[1])
b = int(mean[2])
print L,a,b
我使用的是opencv 3和python 2.7
P.S。我已经尝试过背景减法器MOG2,据说它可以识别阴影但是它对于我的使用来说是嘈杂的并且不可行。
答案 0 :(得分:0)
您可以定义一个遮罩来侵蚀图像,这样就可以打破山谷中的顶部和底部斑点。您可以将其应用于您的代码,如下所示:
# loop over the contours
for i, cnt in enumerate(contours):
# compute the bounding box for the contour
(x, y, w, h) = cv2.boundingRect(cnt)
# reject contours outside size range
if w > 250 or w < 30 or h > 250 or h < 30 :
continue
# make sure the box is inside the frame
if x <= 0 or y <= 0 or x+w >= (WIDTH -1) or y+h >= (HIGHT -1):
continue
# ---------------
# create a mask for erosion, you can play with the mask size/shape
mask = cv2.getStructuringElement(cv2.MORPH_RECT,(5,5))
# erode the original image
eroded_img = cv2.erode(binary,mask,iterations = 1)
cv2.imshow("Eroded image",eroded_img)
# find the middle of the two new contours
_,new_contours,_ = cv2.findContours(eroded_img, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
(_, y_t, _, h_t) = cv2.boundingRect(new_contours[0])
(_, y_b, _, h_b) = cv2.boundingRect(new_contours[1])
bottom_top_y = max(y_t, y_b) # highest y of bottom part
top_bottom_y = min(y_t+h_t, y_b+h_b) # lowest y of top part
half = top_bottom_y + (bottom_top_y - top_bottom_y)/2
# ------------
# isolate feature
roi = lab[y:y+half, x:x+w]
mask = binary[y:y+half, x:x+w]
# calculate the mean of the colour
mean = cv2.mean(roi, mask = mask)
# note: mean is L a b
L = int(mean[0])
a = int(mean[1])
b = int(mean[2])
print L,a,b
希望它有所帮助!有关二进制图像上的形态学操作的更多示例,您可以检查here。