我得到这个ValueError:新数组的总大小必须保持不变。谁能解决?

时间:2015-09-05 13:34:32

标签: python python-2.7 machine-learning

我想根据使用支持向量机给出的类来绘制数据。我被困在这段代码中。

错误显示在 - > Z = Z.reshape(XX.shape)

请注意,代码是从sklearn-svm导入的。当我尝试更改给应用程序的数据集时,会显示上面的错误。

    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import svm,datasets

    iris = datasets.load_iris()
    X = iris.data[:, :2]  # we only take the first two features. We could
                             # avoid this ugly slicing by using a two-dim dataset
    Y = iris.target
    Y = np.array(Y)
    # figure number
    fignum = 1

    # fit the model
    for kernel in ('linear', 'poly', 'rbf'):
        clf = svm.SVC(kernel=kernel, gamma=2)
        clf.fit(X, Y)

        # plot the line, the points, and the nearest vectors to the plane
        plt.figure(fignum, figsize=(4, 3))
        plt.clf()

        plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80,
                    facecolors='none', zorder=10)
        plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired)

        plt.axis('tight')
        x_min = 0
        x_max = 10
        y_min = 0
        y_max = 10

        XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
        Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])
        # Put the result into a color plot
        Z = Z.reshape(XX.shape)
        #print Z
        plt.figure(fignum, figsize=(4, 3))
        plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)
        plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'],levels=[-.5, 0, .5])
        plt.xlim(x_min, x_max)
        plt.ylim(y_min, y_max)

        plt.xticks(())
        plt.yticks(())
        fignum = fignum + 1
    plt.show()

1 个答案:

答案 0 :(得分:1)

XXYY的形状均为(200, 200),但您的Z形状为(40000, 3)。因此XXYY都包含40000个值,而Z有120000个值,因此不能简单地将其重新整形为XXYY的形状,因为您会丢失值。对decision_function()的调用不会像您期望的那样返回形状(N_samples, 1)的矩阵。相反,根据scikit documentation,它会返回(N_samples, n_class * (n_class-1) / 2)。您可以用predict()替换呼叫以获得(可能)期望的结果,即

Z = clf.predict(np.c_[XX.ravel(), YY.ravel()])

svm result