如何在scikit-learn中创建/自定义自己的得分手功能?

时间:2015-09-04 15:20:08

标签: python scikit-learn

我在Support Vector Regression中使用GridSearchCV作为估算工具。但我想更改错误函数:而不是使用默认值(R平方:确定系数),我想定义自己的自定义错误函数。

我尝试用make_scorer创建一个,但它没有用。

我阅读了文档并发现可以创建custom estimators,但我不需要重新制作整个估算工具 - 只需要错误/评分函数。

我认为我可以通过将callable定义为得分手来实现,就像它在docs中所说的那样。

但我不知道如何使用估算器:在我的情况下SVR。我是否必须切换到分类器(例如SVC)?我将如何使用它?

我的自定义错误功能如下:

def my_custom_loss_func(X_train_scaled, Y_train_scaled):
    error, M = 0, 0
    for i in range(0, len(Y_train_scaled)):
        z = (Y_train_scaled[i] - M)
        if X_train_scaled[i] > M and Y_train_scaled[i] > M and (X_train_scaled[i] - Y_train_scaled[i]) > 0:
            error_i = (abs(Y_train_scaled[i] - X_train_scaled[i]))**(2*np.exp(z))
        if X_train_scaled[i] > M and Y_train_scaled[i] > M and (X_train_scaled[i] - Y_train_scaled[i]) < 0:
            error_i = -(abs((Y_train_scaled[i] - X_train_scaled[i]))**(2*np.exp(z)))
        if X_train_scaled[i] > M and Y_train_scaled[i] < M:
            error_i = -(abs(Y_train_scaled[i] - X_train_scaled[i]))**(2*np.exp(-z))
    error += error_i
    return error

变量M不为空/零。为简单起见,我把它设置为零。

是否有人能够显示此自定义评分功能的示例应用程序?谢谢你的帮助!

2 个答案:

答案 0 :(得分:21)

杰米有一个充实的例子,但这里有一个例子直接从scikit-learn documentation使用make_scorer:

import numpy as np
def my_custom_loss_func(ground_truth, predictions):
    diff = np.abs(ground_truth - predictions).max()
    return np.log(1 + diff)

# loss_func will negate the return value of my_custom_loss_func,
#  which will be np.log(2), 0.693, given the values for ground_truth
#  and predictions defined below.
loss  = make_scorer(my_custom_loss_func, greater_is_better=False)
score = make_scorer(my_custom_loss_func, greater_is_better=True)
ground_truth = [[1, 1]]
predictions  = [0, 1]
from sklearn.dummy import DummyClassifier
clf = DummyClassifier(strategy='most_frequent', random_state=0)
clf = clf.fit(ground_truth, predictions)
loss(clf,ground_truth, predictions) 

score(clf,ground_truth, predictions)

通过sklearn.metrics.make_scorer定义自定义记分员时,惯例是以_score结尾的自定义函数返回一个值以使其最大化。对于以_loss_error结尾的得分者,返回的值最小化。您可以通过在make_scorer中设置greater_is_better参数来使用此功能。也就是说,对于较高值较高的得分者,此参数为True,对于较低值较好的得分者,此参数为False。然后GridSearchCV可以在适当的方向上进行优化。

然后您可以将您的功能转换为得分手,如下所示:

from sklearn.metrics.scorer import make_scorer

def custom_loss_func(X_train_scaled, Y_train_scaled):
    error, M = 0, 0
    for i in range(0, len(Y_train_scaled)):
        z = (Y_train_scaled[i] - M)
        if X_train_scaled[i] > M and Y_train_scaled[i] > M and (X_train_scaled[i] - Y_train_scaled[i]) > 0:
            error_i = (abs(Y_train_scaled[i] - X_train_scaled[i]))**(2*np.exp(z))
        if X_train_scaled[i] > M and Y_train_scaled[i] > M and (X_train_scaled[i] - Y_train_scaled[i]) < 0:
            error_i = -(abs((Y_train_scaled[i] - X_train_scaled[i]))**(2*np.exp(z)))
        if X_train_scaled[i] > M and Y_train_scaled[i] < M:
            error_i = -(abs(Y_train_scaled[i] - X_train_scaled[i]))**(2*np.exp(-z))
    error += error_i
    return error


custom_scorer = make_scorer(custom_loss_func, greater_is_better=True)

然后将custom_scorer传递给GridSearchCV,就像其他任何评分函数一样:clf = GridSearchCV(scoring=custom_scorer)

答案 1 :(得分:19)

如您所见,这是通过make_scorerdocs)完成的。

from sklearn.grid_search import GridSearchCV
from sklearn.metrics.scorer import make_scorer
from sklearn.svm import SVR

import numpy as np

rng = np.random.RandomState(1)

def my_custom_loss_func(X_train_scaled, Y_train_scaled):
    error, M = 0, 0
    for i in range(0, len(Y_train_scaled)):
        z = (Y_train_scaled[i] - M)
        if X_train_scaled[i] > M and Y_train_scaled[i] > M and (X_train_scaled[i] - Y_train_scaled[i]) > 0:
            error_i = (abs(Y_train_scaled[i] - X_train_scaled[i]))**(2*np.exp(z))
        if X_train_scaled[i] > M and Y_train_scaled[i] > M and (X_train_scaled[i] - Y_train_scaled[i]) < 0:
            error_i = -(abs((Y_train_scaled[i] - X_train_scaled[i]))**(2*np.exp(z)))
        if X_train_scaled[i] > M and Y_train_scaled[i] < M:
            error_i = -(abs(Y_train_scaled[i] - X_train_scaled[i]))**(2*np.exp(-z))
    error += error_i
    return error

# Generate sample data
X = 5 * rng.rand(10000, 1)
y = np.sin(X).ravel()

# Add noise to targets
y[::5] += 3 * (0.5 - rng.rand(X.shape[0]/5))

train_size = 100

my_scorer = make_scorer(my_custom_loss_func, greater_is_better=True)

svr = GridSearchCV(SVR(kernel='rbf', gamma=0.1),
                   scoring=my_scorer,
                   cv=5,
                   param_grid={"C": [1e0, 1e1, 1e2, 1e3],
                               "gamma": np.logspace(-2, 2, 5)})

svr.fit(X[:train_size], y[:train_size])

print svr.best_params_
print svr.score(X[train_size:], y[train_size:])