我正在对一组推文进行情绪分析,我现在想知道如何在正面和负面词典中添加短语。
我已经阅读了我要测试的短语的文件,但在运行情感分析时,它并没有给我一个结果。
在阅读情感算法时,我可以看到它是将字词与词典相匹配,但有没有办法扫描单词和短语?
以下是代码:
score.sentiment = function(sentences, pos.words, neg.words, .progress='none')
{
require(plyr)
require(stringr)
# we got a vector of sentences. plyr will handle a list
# or a vector as an "l" for us
# we want a simple array ("a") of scores back, so we use
# "l" + "a" + "ply" = "laply":
scores = laply(sentences, function(sentence, pos.words, neg.words) {
# clean up sentences with R's regex-driven global substitute, gsub():
sentence = gsub('[[:punct:]]', '', sentence)
sentence = gsub('[[:cntrl:]]', '', sentence)
sentence = gsub('\\d+', '', sentence)
# and convert to lower case:
sentence = tolower(sentence)
# split into words. str_split is in the stringr package
word.list = str_split(sentence, '\\s+')
# sometimes a list() is one level of hierarchy too much
words = unlist(word.list)
# compare our words to the dictionaries of positive & negative terms
pos.matches = match(words, pos)
neg.matches = match(words, neg)
# match() returns the position of the matched term or NA
# we just want a TRUE/FALSE:
pos.matches = !is.na(pos.matches)
neg.matches = !is.na(neg.matches)
# and conveniently enough, TRUE/FALSE will be treated as 1/0 by sum():
score = sum(pos.matches) - sum(neg.matches)
return(score)
}, pos.words, neg.words, .progress=.progress )
scores.df = data.frame(score=scores, text=sentences)
return(scores.df)
}
analysis=score.sentiment(Tweets, pos, neg)
table(analysis$score)
这是我得到的结果:
0
20
而我在此功能提供的标准表之后 e.g。
-2 -1 0 1 2
1 2 3 4 5
例如。
有没有人对如何在短语上运行这个有什么想法? 注意:TWEETS文件是一个句子文件。
答案 0 :(得分:1)
函数score.sentiment
似乎有效。如果我尝试一个非常简单的设置,
Tweets = c("this is good", "how bad it is")
neg = c("bad")
pos = c("good")
analysis=score.sentiment(Tweets, pos, neg)
table(analysis$score)
我得到了预期的结果,
> table(analysis$score)
-1 1
1 1
你如何将20条推文提供给方法?从你发布的结果0 20
开始,我会说你的问题是你的20条推文中没有任何正面或负面的词,尽管你会注意到它的情况。也许如果你在推文列表上发布更多细节,你的正面和负面的话会更容易帮助你。
无论如何,你的功能似乎工作正常。
希望它有所帮助。
通过评论澄清后编辑:
实际上,要解决您的问题,您需要将您的句子标记为n-grams
,其中n
将对应于您的正面和负面列表中使用的最大单词数{{1} }。你可以看到如何做到这一点,例如在this SO question。为了完整性,并且因为我自己测试过,这里有一个例子,你可以做什么。我将其简化为n-grams
(n = 2)并使用以下输入:
bigrams
您可以像这样创建一个bigram标记器,
Tweets = c("rewarding hard work with raising taxes and VAT. #LabourManifesto",
"Ed Miliband is offering 'wrong choice' of 'more cuts' in #LabourManifesto")
pos = c("rewarding hard work")
neg = c("wrong choice")
测试一下,
library(tm)
library(RWeka)
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min=2,max=2))
然后在您的方法中,您只需替换此行,
> BigramTokenizer("rewarding hard work with raising taxes and VAT. #LabourManifesto")
[1] "rewarding hard" "hard work" "work with"
[4] "with raising" "raising taxes" "taxes and"
[7] "and VAT" "VAT #LabourManifesto"
由此
word.list = str_split(sentence, '\\s+')
当然,如果您将word.list = BigramTokenizer(sentence)
更改为word.list
或类似的内容会更好。
结果是,正如所料,
ngram.list
只需确定> table(analysis$score)
-1 0
1 1
尺寸并将其添加到n-gram
即可。您应该没问题。
希望它有所帮助。