情景: 我在oracle数据库中有近1500万条记录,每条记录都有一个被压缩的列。任务是导出相同的表但解压缩的列值。我的解决方案步骤如下:
- Read a chunk of data using jdbcTemplate (returns List)
- For each of the record above decompress the column value and form an updated list
- Use the above list to insert into another table (This is being executed by another thread).
因此,这里有一批48842条记录是分析,
- Reading takes around 9 seconds
- Writing takes around 47 seconds
- Compression takes around 135 seconds
通过上述处理1500万条记录的分析,这个过程大约需要16-17个小时。有没有办法改善它? 我正在寻找减压技术的一个很大的改进领域。在我的情况下,即使是减压技术的少量改进也会产生巨大的差异。任何帮助将非常感激。
以下是我正在使用的解压缩方法
public String decompressMessage(String message)
throws Exception
{
ByteArrayInputStream byteArrayIPStream = null;
GZIPInputStream gZipIPStream = null;
BufferedReader bufferedReader = null;
String decompressedMessage = "";
String line="";
byte[] compressByteArray = null;
try{
if(message==null || "".equals(message))
{
logger.error("Decompress is not possible as the string is empty");
return "";
}
compressByteArray = Base64.decode(message);
byteArrayIPStream = new ByteArrayInputStream(compressByteArray);
gZipIPStream = new GZIPInputStream(byteArrayIPStream);
bufferedReader = new BufferedReader(new InputStreamReader(gZipIPStream, "UTF-8"));
while ((line = bufferedReader.readLine()) != null) {
decompressedMessage = decompressedMessage + line;
}
return decompressedMessage;
}
catch(Exception e)
{
logger.error("Exception while decompressing the message with details {}",e);
return "";
}
finally{
line = null;
compressByteArray = null;
if(byteArrayIPStream!=null)
byteArrayIPStream.close();
if(gZipIPStream!=null)
gZipIPStream.close();
if(bufferedReader!=null)
bufferedReader.close();
}
}
答案 0 :(得分:2)
当然,最大的问题是在循环中连接一个字符串。字符串是不可变的,这意味着你将O(n 2 )时间复杂度强加给基本为O(n)的作业。
用modules
替换字符串,并从输入端删除StringWriter
。使用BufferedReader
后跟Reader#read(char[])
累积StringWriter#write(char[])
中的数据,最后获取StringWriter
字符串。
答案 1 :(得分:1)
让Oracle数据库执行此操作。例如:
-- NOTE: This example would be simpler if compressed_data were a RAW type...
create table matt1 ( compressed_data VARCHAR2(4000) );
-- Put 100,000 rows of compressed data in there
insert into matt1 (compressed_data)
select utl_raw.cast_to_varchar2(utl_compress.lz_compress(src => utl_raw.cast_to_raw(dbms_random.string('a',30) || 'UNCOMPRESSED_DATA' || lpad(rownum,10,'0') || dbms_random.string('a',30))))
from dual
connect by rownum <= 100000;
-- Create the uncompressed version of the table to export
create table matt1_uncompressed as
select utl_raw.cast_to_varchar2(utl_compress.lz_uncompress(src => utl_raw.cast_to_raw(compressed_data))) uncompressed_data
from matt1
where rownum <= 100000;
--- execution time was 3.448 seconds
您的示例中的数据看起来像是base64编码的。试试这个:
SELECT utl_compress.lz_uncompress(src =>
utl_encode.base64_decode(utl_raw.cast_to_raw(your_table.compressed_column)))
from your_table;