Python - 将稀疏文件读入稀疏矩阵的最佳方法

时间:2015-09-03 06:43:33

标签: python numpy matrix scipy sparse-matrix

想知道是否有更有效的方法将文件内容加载到稀疏矩阵中。 以下代码从一个大文件(8GB)中读取,该文件大部分为零值(非常稀疏),然后对每行读取进行一些处理。 我想有效地对它进行算术运算,所以我尝试将这些行存储为稀疏矩阵。 由于文件中的行数预先不知道,并且数组/矩阵不是动态的,我必须先将其存储在列表中,然后转换为csr_matrix。 这个阶段(" X = csr_matrix(X)")需要很多的时间和记忆。
有什么建议吗?

import numpy as np
from scipy.sparse import csr_matrix
from datetime import datetime as time

global header_names; header_names = []

def readOppFromFile(filepath):

    print "Read Opportunities From File..." + str(time.now())

    # read file header - feature names separated with commas
    global header_names

    with open(filepath, "r") as f:

        i=0

        header_names  = f.readline().rstrip().split(',')

        for line in f: 


            # replace empty string with 0 in comma-separated string. In addition, clean null values (replace with 0)
            yield [(x.replace('null', '0') if x else 0) for x in line.rstrip().split(',')]
            i += 1

        print "Number of opportunities read from file: %s" % str(i) 

def processOpportunities(opp_data):

    print "Process Opportunities ..." + str(time.now())

    # Initialization 
    X = []
    targets_array = []

    global header_names

    for opportunity in opp_data:

        # Extract for each opportunity it's target variable, save it in a special array and then remove it  
        target = opportunity[-1] # Only last column
        targets_array.append(target)
        del opportunity[-1] # Remove last column

        X.append(opportunity)     

   print " Starting to transform to a sparse matrix" + str(time.now())
    X = csr_matrix(X)
    print "Finished transform to a sparse matrix " + str(time.now())

    # The target variable of each impression
    targets_array = np.array(targets_array, dtype=int)
    print "targets_array" + str(time.now())        

    return X, targets_array

def main():


    print "STRAT -----> " + str(time.now())
    running_time = time.now()

    opps_data = readOppFromFile(inputfilename)

    features, target = processOpportunities(opps_data)

if __name__ == '__main__':

    """ ################### GLOBAL VARIABLES ############################ """     
    inputfilename = 'C:/somefolder/trainingset.working.csv'

    """ ################### START PROGRAM ############################ """     
    main()

更新 矩阵的尺寸不是恒定的,它们取决于输入文件,并且可能在程序的每次运行中发生变化。 有关我输入的一小部分示例,请参阅here

1 个答案:

答案 0 :(得分:3)

如果您手动跟踪非零,则可以直接构造稀疏矩阵:

X_data = []
X_row, X_col = [], []
targets_array = []

for row_idx, opportunity in enumerate(opp_data):
    targets_array.append(int(opportunity[-1]))
    row = np.array(map(int, opportunity[:-1]))
    col_inds, = np.nonzero(row)
    X_col.extend(col_inds)
    X_row.extend([row_idx]*len(col_inds))
    X_data.extend(row[col_inds])

print " Starting to transform to a sparse matrix" + str(time.now())
X = coo_matrix((X_data, (X_row, X_col)), dtype=int)
print "Finished transform to a sparse matrix " + str(time.now())

这构造了COO格式的矩阵,很容易转换成你喜欢的任何格式:

X = X.tocsr()