SparkSQL:如何处理用户定义函数中的空值?

时间:2015-09-02 15:25:15

标签: scala apache-spark apache-spark-sql user-defined-functions nullable

鉴于表1中有一列" x"类型为String。 我想创建表2,其中包含一列" y"这是" x"。

中给出的日期字符串的整数表示

基本是将null值保留在" y"列中。

表1(数据帧df1):

+----------+
|         x|
+----------+
|2015-09-12|
|2015-09-13|
|      null|
|      null|
+----------+
root
 |-- x: string (nullable = true)

表2(数据帧df2):

+----------+--------+                                                                  
|         x|       y|
+----------+--------+
|      null|    null|
|      null|    null|
|2015-09-12|20150912|
|2015-09-13|20150913|
+----------+--------+
root
 |-- x: string (nullable = true)
 |-- y: integer (nullable = true)

用户定义的函数(udf)转换来自列" x"的值。专栏#34; y"是:

val extractDateAsInt = udf[Int, String] (
  (d:String) => d.substring(0, 10)
      .filterNot( "-".toSet)
      .toInt )

并且有效,无法处理空值。

尽管如此,我可以做类似

的事情
val extractDateAsIntWithNull = udf[Int, String] (
  (d:String) => 
    if (d != null) d.substring(0, 10).filterNot( "-".toSet).toInt 
    else 1 )

我找不到任何办法,生产"通过udfs的null值(当然,因为Int s不能是null)。

我目前创建df2的解决方案(表2)如下:

// holds data of table 1  
val df1 = ... 

// filter entries from df1, that are not null
val dfNotNulls = df1.filter(df1("x")
  .isNotNull)
  .withColumn("y", extractDateAsInt(df1("x")))
  .withColumnRenamed("x", "right_x")

// create df2 via a left join on df1 and dfNotNull having 
val df2 = df1.join( dfNotNulls, df1("x") === dfNotNulls("right_x"), "leftouter" ).drop("right_x")

问题

  • 目前的解决方案似乎很麻烦(可能效率不高)。还有更好的方法吗?
  • @ Spark-developers:是否有类型NullableInt计划/可用,以便可以使用以下udf(参见代码摘录)?

代码摘录

val extractDateAsNullableInt = udf[NullableInt, String] (
  (d:String) => 
    if (d != null) d.substring(0, 10).filterNot( "-".toSet).toInt 
    else null )

3 个答案:

答案 0 :(得分:49)

这是Option派上用场的地方:

val extractDateAsOptionInt = udf((d: String) => d match {
  case null => None
  case s => Some(s.substring(0, 10).filterNot("-".toSet).toInt)
})

或者在一般情况下使其更安全:

import scala.util.Try

val extractDateAsOptionInt = udf((d: String) => Try(
  d.substring(0, 10).filterNot("-".toSet).toInt
).toOption)

所有功劳都归Dmitriy Selivanov所有,他们已将此解决方案指出为(缺少?)编辑here

替代方法是在UDF之外处理null

import org.apache.spark.sql.functions.{lit, when}
import org.apache.spark.sql.types.IntegerType

val extractDateAsInt = udf(
   (d: String) => d.substring(0, 10).filterNot("-".toSet).toInt
)

df.withColumn("y",
  when($"x".isNull, lit(null))
    .otherwise(extractDateAsInt($"x"))
    .cast(IntegerType)
)

答案 1 :(得分:11)

Scala实际上有一个很好的工厂函数,Option(),可以使这更简洁:

val extractDateAsOptionInt = udf((d: String) => 
  Option(d).map(_.substring(0, 10).filterNot("-".toSet).toInt))

在Option内部,Option对象的apply方法只是对你进行空检查:

def apply[A](x: A): Option[A] = if (x == null) None else Some(x)

答案 2 :(得分:10)

补充代码

使用@ zero323的 nice 答案,我创建了以下代码,以使用户定义的函数可用,如上所述处理空值。希望,这对其他人有帮助!

/**
 * Set of methods to construct [[org.apache.spark.sql.UserDefinedFunction]]s that
 * handle `null` values.
 */
object NullableFunctions {

  import org.apache.spark.sql.functions._
  import scala.reflect.runtime.universe.{TypeTag}
  import org.apache.spark.sql.UserDefinedFunction

  /**
   * Given a function A1 => RT, create a [[org.apache.spark.sql.UserDefinedFunction]] such that
   *   * if fnc input is null, None is returned. This will create a null value in the output Spark column.
   *   * if A1 is non null, Some( f(input) will be returned, thus creating f(input) as value in the output column.
   * @param f function from A1 => RT
   * @tparam RT return type
   * @tparam A1 input parameter type
   * @return a [[org.apache.spark.sql.UserDefinedFunction]] with the behaviour describe above
   */
  def nullableUdf[RT: TypeTag, A1: TypeTag](f: Function1[A1, RT]): UserDefinedFunction = {
    udf[Option[RT],A1]( (i: A1) => i match {
      case null => None
      case s => Some(f(i))
    })
  }

  /**
   * Given a function A1, A2 => RT, create a [[org.apache.spark.sql.UserDefinedFunction]] such that
   *   * if on of the function input parameters is null, None is returned.
   *     This will create a null value in the output Spark column.
   *   * if both input parameters are non null, Some( f(input) will be returned, thus creating f(input1, input2)
   *     as value in the output column.
   * @param f function from A1 => RT
   * @tparam RT return type
   * @tparam A1 input parameter type
   * @tparam A2 input parameter type
   * @return a [[org.apache.spark.sql.UserDefinedFunction]] with the behaviour describe above
   */
  def nullableUdf[RT: TypeTag, A1: TypeTag, A2: TypeTag](f: Function2[A1, A2, RT]): UserDefinedFunction = {
    udf[Option[RT], A1, A2]( (i1: A1, i2: A2) =>  (i1, i2) match {
      case (null, _) => None
      case (_, null) => None
      case (s1, s2) => Some((f(s1,s2)))
    } )
  }
}