鉴于表1中有一列" x"类型为String。 我想创建表2,其中包含一列" y"这是" x"。
中给出的日期字符串的整数表示 基本是将null
值保留在" y"列中。
表1(数据帧df1):
+----------+
| x|
+----------+
|2015-09-12|
|2015-09-13|
| null|
| null|
+----------+
root
|-- x: string (nullable = true)
表2(数据帧df2):
+----------+--------+
| x| y|
+----------+--------+
| null| null|
| null| null|
|2015-09-12|20150912|
|2015-09-13|20150913|
+----------+--------+
root
|-- x: string (nullable = true)
|-- y: integer (nullable = true)
用户定义的函数(udf)转换来自列" x"的值。专栏#34; y"是:
val extractDateAsInt = udf[Int, String] (
(d:String) => d.substring(0, 10)
.filterNot( "-".toSet)
.toInt )
并且有效,无法处理空值。
尽管如此,我可以做类似
的事情val extractDateAsIntWithNull = udf[Int, String] (
(d:String) =>
if (d != null) d.substring(0, 10).filterNot( "-".toSet).toInt
else 1 )
我找不到任何办法,生产"通过udfs的null
值(当然,因为Int
s不能是null
)。
我目前创建df2的解决方案(表2)如下:
// holds data of table 1
val df1 = ...
// filter entries from df1, that are not null
val dfNotNulls = df1.filter(df1("x")
.isNotNull)
.withColumn("y", extractDateAsInt(df1("x")))
.withColumnRenamed("x", "right_x")
// create df2 via a left join on df1 and dfNotNull having
val df2 = df1.join( dfNotNulls, df1("x") === dfNotNulls("right_x"), "leftouter" ).drop("right_x")
问题:
NullableInt
计划/可用,以便可以使用以下udf(参见代码摘录)?代码摘录
val extractDateAsNullableInt = udf[NullableInt, String] (
(d:String) =>
if (d != null) d.substring(0, 10).filterNot( "-".toSet).toInt
else null )
答案 0 :(得分:49)
这是Option
派上用场的地方:
val extractDateAsOptionInt = udf((d: String) => d match {
case null => None
case s => Some(s.substring(0, 10).filterNot("-".toSet).toInt)
})
或者在一般情况下使其更安全:
import scala.util.Try
val extractDateAsOptionInt = udf((d: String) => Try(
d.substring(0, 10).filterNot("-".toSet).toInt
).toOption)
所有功劳都归Dmitriy Selivanov所有,他们已将此解决方案指出为(缺少?)编辑here。
替代方法是在UDF之外处理null
:
import org.apache.spark.sql.functions.{lit, when}
import org.apache.spark.sql.types.IntegerType
val extractDateAsInt = udf(
(d: String) => d.substring(0, 10).filterNot("-".toSet).toInt
)
df.withColumn("y",
when($"x".isNull, lit(null))
.otherwise(extractDateAsInt($"x"))
.cast(IntegerType)
)
答案 1 :(得分:11)
Scala实际上有一个很好的工厂函数,Option(),可以使这更简洁:
val extractDateAsOptionInt = udf((d: String) =>
Option(d).map(_.substring(0, 10).filterNot("-".toSet).toInt))
在Option内部,Option对象的apply方法只是对你进行空检查:
def apply[A](x: A): Option[A] = if (x == null) None else Some(x)
答案 2 :(得分:10)
使用@ zero323的 nice 答案,我创建了以下代码,以使用户定义的函数可用,如上所述处理空值。希望,这对其他人有帮助!
/**
* Set of methods to construct [[org.apache.spark.sql.UserDefinedFunction]]s that
* handle `null` values.
*/
object NullableFunctions {
import org.apache.spark.sql.functions._
import scala.reflect.runtime.universe.{TypeTag}
import org.apache.spark.sql.UserDefinedFunction
/**
* Given a function A1 => RT, create a [[org.apache.spark.sql.UserDefinedFunction]] such that
* * if fnc input is null, None is returned. This will create a null value in the output Spark column.
* * if A1 is non null, Some( f(input) will be returned, thus creating f(input) as value in the output column.
* @param f function from A1 => RT
* @tparam RT return type
* @tparam A1 input parameter type
* @return a [[org.apache.spark.sql.UserDefinedFunction]] with the behaviour describe above
*/
def nullableUdf[RT: TypeTag, A1: TypeTag](f: Function1[A1, RT]): UserDefinedFunction = {
udf[Option[RT],A1]( (i: A1) => i match {
case null => None
case s => Some(f(i))
})
}
/**
* Given a function A1, A2 => RT, create a [[org.apache.spark.sql.UserDefinedFunction]] such that
* * if on of the function input parameters is null, None is returned.
* This will create a null value in the output Spark column.
* * if both input parameters are non null, Some( f(input) will be returned, thus creating f(input1, input2)
* as value in the output column.
* @param f function from A1 => RT
* @tparam RT return type
* @tparam A1 input parameter type
* @tparam A2 input parameter type
* @return a [[org.apache.spark.sql.UserDefinedFunction]] with the behaviour describe above
*/
def nullableUdf[RT: TypeTag, A1: TypeTag, A2: TypeTag](f: Function2[A1, A2, RT]): UserDefinedFunction = {
udf[Option[RT], A1, A2]( (i1: A1, i2: A2) => (i1, i2) match {
case (null, _) => None
case (_, null) => None
case (s1, s2) => Some((f(s1,s2)))
} )
}
}