加载RNN的数据

时间:2015-09-02 08:49:55

标签: pandas machine-learning neural-network theano deep-learning

在RNN训练示例中,我注意到输入数据和目标数据都是三维数组,需要定义输入和输出之间的时间步长延迟。

input_seqs = np.zeros((num_batches, num_time_steps, batch_size), dtype=floatX)
target_seqs = np.zeros((num_batches, num_time_steps, batch_size), dtype=floatX)
target_seqs[0:-1, :] = input_seqs[1:, :]

我想为RNN训练加载自定义数据 - 输入向量= 1,输出向量= 1,time_steps = 1(参见附件data1a.csv)。重塑在这里不起作用。有谁可以说明如何做到这一点?

train = pd.read_csv("data1a.csv")
input = np.array(train.values[:][:, 1:2], dtype=np.float32)
input_seqs = ???
target_seqs = ???

谢谢!

数据链接: links data1a.csv

我只是对它有所了解,但不知道如何继续:

train = pd.read_csv("data1a.csv")
dataset = np.array(train.values[:][:, 1:2], dtype=np.float32)

def batch(): 
    inputs = np.zeros((batch_size, time_steps, dataset.shape[1]), 'f') 
    outputs = np.zeros((batch_size, time_steps, dataset.shape[1]), 'f') 
    for b in range(batch_size): 
        i = np.random.randint(len(dataset) - time_steps - 1) 
        inputs[b] = dataset[i:i+time_steps] 
        outputs[b] = dataset[i+1:i+1+time_steps] 
    return [inputs, outputs] 

下一步是什么?

input_seqs = ???
target_seqs = ???

0 个答案:

没有答案