当模型对象是S4对象时,从模型对象访问tuneValue - 插入符号,自定义模型

时间:2015-09-02 01:04:17

标签: r r-caret

我在插入符号中使用自定义模型,它主要基于vanilla“cforest”方法。

为了构建我的模型,我获取了cforest模型的modelInfo:

newModel <- getModelInfo("cforest", regex=F)[[1]]

我需要实现自定义预测功能,所以我这样做:

out$predict = function(modelFit, newdata, submodels = NULL) {
    # new predict function which needs the tuned parameters
    best.params <- modelFit$tuneValue
    # rest of the code using best params
}

新预测功能的内容本身是无关紧要的。关键是,我需要预测函数中的调整值。

虽然代码与其他模型完美配合,但这不适用于cforest,因为在这种情况下,modelFit是一个“RandomForest”S4对象,我无法访问tuneValue。 (确切的错误是“Error in modelFit$tuneValue : $ operator not defined for this S4 class”)

我探索了“RandomForest”对象,它似乎不包含任何插槽中的调整值。

我的猜测是,由于它是一个S4对象,将调整值存储到$ tuneValue的插入符代码在这种特殊情况下不起作用。

也许我可以在拟合过程中的某个时刻手动保存调整值,但我不知道

1 - 当我应该这样做时(何时选择调整值?)

2 - 我应该保存它们以便在预测期间访问它们

有没有人知道我该怎么做?

这是生成RandomForest S4对象的最小代码:

x <- matrix(rnorm(20*10), 20, 10)
y <- x %*% rnorm(10)
y <- factor(y<mean(y), levels=c(T,F), labels=c("high", "low"))

new_model <- getModelInfo("cforest", regex=F)[[1]]

fit <- train(x=x, y=y, method = new_model)

# this is a RandomForest S4 object
fit$finalModel

1 个答案:

答案 0 :(得分:0)

我花了一段时间才弄明白,但实际上它很简单。由于模型是一个S4对象,我想在其中添加信息......我构建了自己的S4对象,继承自这个模型!

为了做到这一点,我不得不改变&#34; fit&#34;功能。

# loading vanilla model
newModel <- getModelInfo("cforest", regex=F)[[1]]

# backing up old fit fun
newModel$old_fit <- out$fit

# editing fit function to wrap the S4 model into my custom S4 object
  newModel$fit <- function(x, y, wts, param, lev, last, classProbs, ...) { 

    tmp <- newModel$old_fit(x, y, wts, param, lev, last, classProbs, ...)    

if(isS4(tmp)) {
      old_class <- as.character(class(tmp))
      # creating custom class with the slots I need
      setClass(".custom", slots=list(.threshold="numeric", .levels="character"), contains=old_class)

      # instanciating the new class with values taken from the argument of fit()
      tmp <- new(".custom", .threshold=param$threshold, .levels=lev, tmp)
    }
    tmp
  }

现在,模型对象始终属于阶级&#34; .custom&#34;所以我可以这样做:

newModel$predict = function(modelFit, newdata, submodels = NULL) {    
    if(isS4(modelFit)){
      if(class(modelFit)!=".custom")
        error("predict() received a S4 object whose class was not '.custom'")
      obsLevels <- modelFit@.levels
      threshold <- modelFit@.threshold
    } else {
      obsLevels <- modelFit$obsLevels
      threshold <- modelFit$tuneValue$threshold
    }
    # rest of the code
}

这很棒,现在我的自定义模型可以扩展任何插入模型,无论它是否依赖于S4对象,如cforest或svm!