我的数据集是RDD[Array[String]]
,列数超过140列。如何在不对列号进行硬编码的情况下选择列的子集(.map(x => (x(0),x(3),x(6)...))
?
这是我迄今为止尝试过的(成功):
val peopleTups = people.map(x => x.split(",")).map(i => (i(0),i(1)))
但是,我需要多列,并且希望避免对它们进行硬编码。
这是我迄今为止所尝试过的(我认为会更好,但失败了):
// Attempt 1
val colIndices = [0,3,6,10,13]
val peopleTups = people.map(x => x.split(",")).map(i => i(colIndices))
// Error output from attempt 1:
<console>:28: error: type mismatch;
found : List[Int]
required: Int
val peopleTups = people.map(x => x.split(",")).map(i => i(colIndices))
// Attempt 2
colIndices map peopleTups.lift
// Attempt 3
colIndices map peopleTups
// Attempt 4
colIndices.map(index => peopleTups.apply(index))
我发现了这个问题并试了一下,但是因为我正在查看RDD而不是数组,所以它不起作用:How can I select a non-sequential subset elements from an array using Scala and Spark?
答案 0 :(得分:3)
You should map over the RDD
instead of the indices.
val list = List.fill(2)(Array.range(1, 6))
// List(Array(1, 2, 3, 4, 5), Array(1, 2, 3, 4, 5))
val rdd = sc.parallelize(list) // RDD[Array[Int]]
val indices = Array(0, 2, 3)
val selectedColumns = rdd.map(array => indices.map(array)) // RDD[Array[Int]]
selectedColumns.collect()
// Array[Array[Int]] = Array(Array(1, 3, 4), Array(1, 3, 4))
答案 1 :(得分:0)
What about this?
val data = sc.parallelize(List("a,b,c,d,e", "f,g,h,i,j"))
val indices = List(0,3,4)
data.map(_.split(",")).map(ss => indices.map(ss(_))).collect
This should give
res1: Array[List[String]] = Array(List(a, d, e), List(f, i, j))