请允许我考虑以下合成示例:
inline int fun2(int x) {
return x;
}
inline int fun2(double x) {
return 0;
}
inline int fun2(float x) {
return -1;
}
int fun(const std::tuple<int,double,float>& t, std::size_t i) {
switch(i) {
case 0: return fun2(std::get<0>(t));
case 1: return fun2(std::get<1>(t));
case 2: return fun2(std::get<2>(t));
}
}
问题是我应该如何将其扩展到一般情况
template<class... Args> int fun(const std::tuple<Args...>& t, std::size_t i) {
// ?
}
保证
众所周知,当足够大的交换机扩展时,优化器通常使用查找跳转表或编译时二进制搜索树。所以,我想保持这个属性影响大量项目的性能。
更新#3:我使用统一随机索引值重新衡量了效果:
1 10 20 100
@TartanLlama
gcc ~0 42.9235 44.7900 46.5233
clang 10.2046 38.7656 40.4316 41.7557
@chris-beck
gcc ~0 37.564 51.3653 81.552
clang ~0 38.0361 51.6968 83.7704
naive tail recursion
gcc 3.0798 40.6061 48.6744 118.171
clang 11.5907 40.6197 42.8172 137.066
manual switch statement
gcc 41.7236
clang 7.3768
更新#2:似乎clang能够在@TartanLlama解决方案中内联函数,而gcc总是生成函数调用。
答案 0 :(得分:7)
好的,我改写了我的回答。这给了TartanLlama以及我之前建议的不同方法。这符合您的复杂性要求,并且不使用函数指针,因此一切都是可内联的。
编辑:非常感谢Yakk在评论中指出了一个非常重要的优化(需要编译时模板递归深度)
基本上我使用模板制作类型/函数处理程序的二叉树,并手动实现二进制搜索。
使用mpl或boost :: fusion可以更干净地完成此操作,但无论如何这个实现都是自包含的。
它绝对符合您的要求,函数是可内联的,运行时查找是元组中类型数量的O(log n)。
以下是完整列表:
#include <cassert>
#include <cstdint>
#include <tuple>
#include <iostream>
using std::size_t;
// Basic typelist object
template<typename... TL>
struct TypeList{
static const int size = sizeof...(TL);
};
// Metafunction Concat: Concatenate two typelists
template<typename L, typename R>
struct Concat;
template<typename... TL, typename... TR>
struct Concat <TypeList<TL...>, TypeList<TR...>> {
typedef TypeList<TL..., TR...> type;
};
template<typename L, typename R>
using Concat_t = typename Concat<L,R>::type;
// Metafunction First: Get first type from a typelist
template<typename T>
struct First;
template<typename T, typename... TL>
struct First <TypeList<T, TL...>> {
typedef T type;
};
template<typename T>
using First_t = typename First<T>::type;
// Metafunction Split: Split a typelist at a particular index
template<int i, typename TL>
struct Split;
template<int k, typename... TL>
struct Split<k, TypeList<TL...>> {
private:
typedef Split<k/2, TypeList<TL...>> FirstSplit;
typedef Split<k-k/2, typename FirstSplit::R> SecondSplit;
public:
typedef Concat_t<typename FirstSplit::L, typename SecondSplit::L> L;
typedef typename SecondSplit::R R;
};
template<typename T, typename... TL>
struct Split<0, TypeList<T, TL...>> {
typedef TypeList<> L;
typedef TypeList<T, TL...> R;
};
template<typename T, typename... TL>
struct Split<1, TypeList<T, TL...>> {
typedef TypeList<T> L;
typedef TypeList<TL...> R;
};
template<int k>
struct Split<k, TypeList<>> {
typedef TypeList<> L;
typedef TypeList<> R;
};
// Metafunction Subdivide: Split a typelist into two roughly equal typelists
template<typename TL>
struct Subdivide : Split<TL::size / 2, TL> {};
// Metafunction MakeTree: Make a tree from a typelist
template<typename T>
struct MakeTree;
/*
template<>
struct MakeTree<TypeList<>> {
typedef TypeList<> L;
typedef TypeList<> R;
static const int size = 0;
};*/
template<typename T>
struct MakeTree<TypeList<T>> {
typedef TypeList<> L;
typedef TypeList<T> R;
static const int size = R::size;
};
template<typename T1, typename T2, typename... TL>
struct MakeTree<TypeList<T1, T2, TL...>> {
private:
typedef TypeList<T1, T2, TL...> MyList;
typedef Subdivide<MyList> MySubdivide;
public:
typedef MakeTree<typename MySubdivide::L> L;
typedef MakeTree<typename MySubdivide::R> R;
static const int size = L::size + R::size;
};
// Typehandler: What our lists will be made of
template<typename T>
struct type_handler_helper {
typedef int result_type;
typedef T input_type;
typedef result_type (*func_ptr_type)(const input_type &);
};
template<typename T, typename type_handler_helper<T>::func_ptr_type me>
struct type_handler {
typedef type_handler_helper<T> base;
typedef typename base::func_ptr_type func_ptr_type;
typedef typename base::result_type result_type;
typedef typename base::input_type input_type;
static constexpr func_ptr_type my_func = me;
static result_type apply(const input_type & t) {
return me(t);
}
};
// Binary search implementation
template <typename T, bool b = (T::L::size != 0)>
struct apply_helper;
template <typename T>
struct apply_helper<T, false> {
template<typename V>
static int apply(const V & v, size_t index) {
assert(index == 0);
return First_t<typename T::R>::apply(v);
}
};
template <typename T>
struct apply_helper<T, true> {
template<typename V>
static int apply(const V & v, size_t index) {
if( index >= T::L::size ) {
return apply_helper<typename T::R>::apply(v, index - T::L::size);
} else {
return apply_helper<typename T::L>::apply(v, index);
}
}
};
// Original functions
inline int fun2(int x) {
return x;
}
inline int fun2(double x) {
return 0;
}
inline int fun2(float x) {
return -1;
}
// Adapted functions
typedef std::tuple<int, double, float> tup;
inline int g0(const tup & t) { return fun2(std::get<0>(t)); }
inline int g1(const tup & t) { return fun2(std::get<1>(t)); }
inline int g2(const tup & t) { return fun2(std::get<2>(t)); }
// Registry
typedef TypeList<
type_handler<tup, &g0>,
type_handler<tup, &g1>,
type_handler<tup, &g2>
> registry;
typedef MakeTree<registry> jump_table;
int apply(const tup & t, size_t index) {
return apply_helper<jump_table>::apply(t, index);
}
// Demo
int main() {
{
tup t{5, 1.5, 15.5f};
std::cout << apply(t, 0) << std::endl;
std::cout << apply(t, 1) << std::endl;
std::cout << apply(t, 2) << std::endl;
}
{
tup t{10, 1.5, 15.5f};
std::cout << apply(t, 0) << std::endl;
std::cout << apply(t, 1) << std::endl;
std::cout << apply(t, 2) << std::endl;
}
{
tup t{15, 1.5, 15.5f};
std::cout << apply(t, 0) << std::endl;
std::cout << apply(t, 1) << std::endl;
std::cout << apply(t, 2) << std::endl;
}
{
tup t{20, 1.5, 15.5f};
std::cout << apply(t, 0) << std::endl;
std::cout << apply(t, 1) << std::endl;
std::cout << apply(t, 2) << std::endl;
}
}
住在Coliru: http://coliru.stacked-crooked.com/a/3cfbd4d9ebd3bb3a
答案 1 :(得分:5)
如果您将fun2
设置为超载operator()
的类:
struct fun2 {
inline int operator()(int x) {
return x;
}
inline int operator()(double x) {
return 0;
}
inline int operator()(float x) {
return -1;
}
};
然后我们可以修改来自here的dyp答案,为我们工作。
请注意,这在C ++ 14中看起来会更加简洁,因为我们可以推导出所有返回类型并使用std::index_sequence
。
//call the function with the tuple element at the given index
template<class Ret, int N, class T, class Func>
auto apply_one(T&& p, Func func) -> Ret
{
return func( std::get<N>(std::forward<T>(p)) );
}
//call with runtime index
template<class Ret, class T, class Func, int... Is>
auto apply(T&& p, int index, Func func, seq<Is...>) -> Ret
{
using FT = Ret(T&&, Func);
//build up a constexpr array of function pointers to index
static constexpr FT* arr[] = { &apply_one<Ret, Is, T&&, Func>... };
//call the function pointer at the specified index
return arr[index](std::forward<T>(p), func);
}
//tag dispatcher
template<class Ret, class T, class Func>
auto apply(T&& p, int index, Func func) -> Ret
{
return apply<Ret>(std::forward<T>(p), index, func,
gen_seq<std::tuple_size<typename std::decay<T>::type>::value>{});
}
然后我们调用apply
并将返回类型作为模板参数传递(您可以使用decltype
或C ++ 14推断它):
auto t = std::make_tuple(1,1.0,1.0f);
std::cout << apply<int>(t, 0, fun2{}) << std::endl;
std::cout << apply<int>(t, 1, fun2{}) << std::endl;
std::cout << apply<int>(t, 2, fun2{}) << std::endl;
由于使用了函数指针,我不确定这是否能完全满足您的要求,但编译器可以非常积极地优化这种事情。搜索将是O(1)
,因为指针数组只是构建一次然后直接索引,这是非常好的。我会尝试一下,测量一下,看看它是否适合你。