我需要一个工具来用矩形边界框注释图像。输出将采用pascal voc xml格式。注释和图像将成为卷积神经网络用于对象检测的训练数据集的一部分。我将自己手动注释图像。
我考虑了以下工具,但它们不支持pascal-voc。
是否有可以节省时间的注释工具?
答案 0 :(得分:9)
请参考我的github: https://github.com/tzutalin/ImageNet_Utils
答案 1 :(得分:7)
此python代码片段将Sloth json转换为pascal voc xml。
def make_anno():
zind = 0
for z in data:
print zind
filename = data[zind]["filename"]
print filename
head, tail = os.path.split(filename)
basename, file_extension = os.path.splitext(tail)
f = open(basename + '.xml','w')
line = "<annotation>" + '\n'
f.write(line)
line = '\t\t<folder>' + "folder" + '</folder>' + '\n'
f.write(line)
line = '\t\t<filename>' + tail + '</filename>' + '\n'
f.write(line)
line = '\t\t<source>\n\t\t<database>Source</database>\n\t</source>\n'
f.write(line)
im=Image.open('/home/location/VOCdevkit/newdataset/img/' + tail)
(width, height) = im.size
line = '\t<size>\n\t\t<width>'+ str(width) + '</width>\n\t\t<height>' + str(height) + '</height>\n\t'
line += '\t<depth>Unspecified</depth>\n\t</size>'
f.write(line)
line = '\n\t<segmented>Unspecified</segmented>'
f.write(line)
ind = 0
for i in data[zind]["annotations"]:
line = '\n\t<object>'
line += '\n\t\t<name>Name</name>\n\t\t<pose>Unspecified</pose>'
line += '\n\t\t<truncated>Unspecified</truncated>\n\t\t<difficult>Unspecified</difficult>'
xmin = (data[zind]["annotations"][ind]["x"])
line += '\n\t\t<bndbox>\n\t\t\t<xmin>' + str(xmin) + '</xmin>'
ymin = (data[zind]["annotations"][ind]["y"])
line += '\n\t\t\t<ymin>' + str(ymin) + '</ymin>'
width = (data[zind]["annotations"][ind]["width"])
height = (data[zind]["annotations"][ind]["height"])
xmax = xmin + width
ymax = ymin + height
line += '\n\t\t\t<xmax>' + str(xmax) + '</xmax>'
line += '\n\t\t\t<ymax>' + str(ymax) + '</ymax>'
line += '\n\t\t</bndbox>'
line += '\n\t</object>'
f.write(line)
ind +=1
f.close()
zind +=1