数百万UINT64 RGBZ图形像素的最快排序算法

时间:2015-08-24 17:39:51

标签: c algorithm performance sorting

我正在使用来自.RAW文件的RGB数据对1000多万uint64_t个进行排序,并且我{C}编程时间的79%用于qsort。我正在寻找这种特定数据类型的更快排序。

作为RAW图形数据,这些数字非常随机且大约80%独特。不需要对排序数据进行部分排序或运行。 uint16_t内的4 uint64_t是R,G,B和零(可能是一个小的数< = ~20)。

我有一个最简单的比较函数,我可以想到使用unsigned long long s(你不能只是减去它们):

qsort(hpidx, num_pix, sizeof(uint64_t), comp_uint64); 
...
int comp_uint64(const void *a, const void *b)  {
    if(*((uint64_t *)a) > *((uint64_t *)b))  return(+1);
    if(*((uint64_t *)a) < *((uint64_t *)b))  return(-1);
    return(0);
}  // End Comp_uint64().

有一个非常有趣的&#34;编程拼图&amp; Code Golf&#34;在StackExchange上,他们使用float。然后有QSort,RecQuick,堆,stooge,树,基数......

swenson / sort看起来很有趣,但对我的数据类型uint64_t没有(明显的)支持。 &#34;快速排序&#34;时间是最好的。一些消息来源称系统qsort可以是任何东西,不一定是&#34;快速排序&#34;。

C ++排序绕过了void指针的通用转换,并实现了对C的性能的巨大改进。必须有一种优化的方法,以经线速度通过64位处理器猛击U8。

系统/编译器信息:

我目前正在使用带有Strawberry Perl的GCC

gcc version 4.9.2 (x86_64-posix-sjlj, built by strawberryperl.com
Intel 2700K Sandy Bridge CPU, 32GB DDR3
windows 7/64 pro

gcc -D__USE_MINGW_ANSI_STDIO -O4 -ffast-math -m64 -Ofast -march=corei7-avx -mtune=corei7 -Ic:/bin/xxHash-master -Lc:/bin/xxHash-master c:/bin/stddev.c -o c:/bin/stddev.g6.exe 

首次尝试更好的qsortQSORT()

试图使用Michael Tokarev的内联qsort

&#34; READY-TO-USE&#34 ;?来自qsort.h文档

-----------------------------
* Several ready-to-use examples:
 *
 * Sorting array of integers:
 * void int_qsort(int *arr, unsigned n) {
 * #define int_lt(a,b) ((*a)<(*b))
 *   QSORT(int, arr, n, int_lt);
--------------------------------

Change from type "int" to "uint64_t"
compile error on TYPE???

    c:/bin/bpbfct.c:586:8: error: expected expression before 'uint64_t'
      QSORT(uint64_t, hpidx, num_pix, islt);

我无法找到一个真实的,编译的,有效的示例程序,只需使用&#34;一般概念进行评论&#34;

#define QSORT_TYPE uint64_t 
#define islt(a,b) ((*a)<(*b))

uint64_t *QSORT_BASE; 
int QSORT_NELT;

hpidx=(uint64_t *) calloc(num_pix+2, sizeof(uint64_t));  // Hash . PIDX
QSORT_BASE = hpidx;
QSORT_NELT = num_pix;  // QSORT_LT is function QSORT_LT()
QSORT(uint64_t, hpidx, num_pix, islt);  
//QSORT(uint64_t *, hpidx, num_pix, QSORT_LT);  // QSORT_LT mal-defined?
//qsort(hpidx, num_pix, sizeof(uint64_t), comp_uint64); // << WORKS

&#34;即用型&#34;示例使用intchar *struct elt的类型。不是uint64_t一种类型?试试long long

QSORT(long long, hpidx, num_pix, islt); 
c:/bin/bpbfct.c:586:8: error: expected expression before 'long'
 QSORT(long long, hpidx, num_pix, islt);

下一次尝试:RADIXSORT

结果:RADIX_SORT是RADICAL!

  I:\br3\pf.249465>grep "Event" bb12.log | grep -i Sort       
 << 1.40 sec average
4) Time=1.411 sec    = 49.61%, Event RADIX_SORT        , hits=1
4) Time=1.396 sec    = 49.13%, Event RADIX_SORT        , hits=1
4) Time=1.392 sec    = 49.15%, Event RADIX_SORT        , hits=1
16) Time=1.414 sec    = 49.12%, Event RADIX_SORT        , hits=1

I:\br3\pf.249465>grep "Event" bb11.log | grep -i Sort 
 << 5.525 sec average  = 3.95 time slower
4) Time=5.538 sec    = 86.34%, Event QSort             , hits=1
4) Time=5.519 sec    = 79.41%, Event QSort             , hits=1
4) Time=5.519 sec    = 79.02%, Event QSort             , hits=1
4) Time=5.563 sec    = 79.49%, Event QSort             , hits=1
4) Time=5.684 sec    = 79.83%, Event QSort             , hits=1
4) Time=5.509 sec    = 79.30%, Event QSort             , hits=1

比开箱即用的任何种类qsort快3.94倍!

而且,更重要的是,有一些实际的,有效的代码,不仅仅是一些Guru所需要的80%,他们假设你知道他们所知道的一切,并且可以填写其他20%。

出色的解决方案!谢谢Louis Ricci!

3 个答案:

答案 0 :(得分:8)

我会使用Radix Sort和8bit基数。对于64位值,优化良好的基数排序将不得不在列表上迭代9次(一次用于预先计算计数和偏移量,8次用于64位/ 8位)。 9 * N时间和2 * N空间(使用阴影阵列)。

这是优化基数排序的样子。

typedef union {
    struct {
        uint32_t c8[256];
        uint32_t c7[256];
        uint32_t c6[256];
        uint32_t c5[256];
        uint32_t c4[256];
        uint32_t c3[256];
        uint32_t c2[256];
        uint32_t c1[256];
    };
    uint32_t counts[256 * 8];
} rscounts_t;

uint64_t * radixSort(uint64_t * array, uint32_t size) {
    rscounts_t counts;
    memset(&counts, 0, 256 * 8 * sizeof(uint32_t));
    uint64_t * cpy = (uint64_t *)malloc(size * sizeof(uint64_t));
    uint32_t o8=0, o7=0, o6=0, o5=0, o4=0, o3=0, o2=0, o1=0;
    uint32_t t8, t7, t6, t5, t4, t3, t2, t1;
    uint32_t x;
    // calculate counts
    for(x = 0; x < size; x++) {
        t8 = array[x] & 0xff;
        t7 = (array[x] >> 8) & 0xff;
        t6 = (array[x] >> 16) & 0xff;
        t5 = (array[x] >> 24) & 0xff;
        t4 = (array[x] >> 32) & 0xff;
        t3 = (array[x] >> 40) & 0xff;
        t2 = (array[x] >> 48) & 0xff;
        t1 = (array[x] >> 56) & 0xff;
        counts.c8[t8]++;
        counts.c7[t7]++;
        counts.c6[t6]++;
        counts.c5[t5]++;
        counts.c4[t4]++;
        counts.c3[t3]++;
        counts.c2[t2]++;
        counts.c1[t1]++;
    }
    // convert counts to offsets
    for(x = 0; x < 256; x++) {
        t8 = o8 + counts.c8[x];
        t7 = o7 + counts.c7[x];
        t6 = o6 + counts.c6[x];
        t5 = o5 + counts.c5[x];
        t4 = o4 + counts.c4[x];
        t3 = o3 + counts.c3[x];
        t2 = o2 + counts.c2[x];
        t1 = o1 + counts.c1[x];
        counts.c8[x] = o8;
        counts.c7[x] = o7;
        counts.c6[x] = o6;
        counts.c5[x] = o5;
        counts.c4[x] = o4;
        counts.c3[x] = o3;
        counts.c2[x] = o2;
        counts.c1[x] = o1;
        o8 = t8; 
        o7 = t7; 
        o6 = t6; 
        o5 = t5; 
        o4 = t4; 
        o3 = t3; 
        o2 = t2; 
        o1 = t1;
    }
    // radix
    for(x = 0; x < size; x++) {
        t8 = array[x] & 0xff;
        cpy[counts.c8[t8]] = array[x];
        counts.c8[t8]++;
    }
    for(x = 0; x < size; x++) {
        t7 = (cpy[x] >> 8) & 0xff;
        array[counts.c7[t7]] = cpy[x];
        counts.c7[t7]++;
    }
    for(x = 0; x < size; x++) {
        t6 = (array[x] >> 16) & 0xff;
        cpy[counts.c6[t6]] = array[x];
        counts.c6[t6]++;
    }
    for(x = 0; x < size; x++) {
        t5 = (cpy[x] >> 24) & 0xff;
        array[counts.c5[t5]] = cpy[x];
        counts.c5[t5]++;
    }
    for(x = 0; x < size; x++) {
        t4 = (array[x] >> 32) & 0xff;
        cpy[counts.c4[t4]] = array[x];
        counts.c4[t4]++;
    }
    for(x = 0; x < size; x++) {
        t3 = (cpy[x] >> 40) & 0xff;
        array[counts.c3[t3]] = cpy[x];
        counts.c3[t3]++;
    }
    for(x = 0; x < size; x++) {
        t2 = (array[x] >> 48) & 0xff;
        cpy[counts.c2[t2]] = array[x];
        counts.c2[t2]++;
    }
    for(x = 0; x < size; x++) {
        t1 = (cpy[x] >> 56) & 0xff;
        array[counts.c1[t1]] = cpy[x];
        counts.c1[t1]++;
    }
    free(cpy);
    return array;
}

编辑此实施基于JavaScript版本Fastest way to sort 32bit signed integer arrays in JavaScript?

这里是C基数排序的http://ideone.com/JHI0d9

的IDEONE

答案 1 :(得分:4)

我看到一些选项,大致按最简单的顺序排列。

  • 使用-flto开关启用链接时优化。这个可能让编译器内联你的比较函数。不尝试就太容易了。
  • 如果LTO无效,您可以使用内联qsort实现,如Michael Tokarev's inline qsortThis page表明改进了2倍,这完全归功于编译器内联比较函数的能力。
  • 使用C ++ std::sort。我知道你的代码在C中,但是你可以制作一个只能排序并提供C接口的小模块。您已经在使用具有出色C ++支持的工具链。
  • 试试swenson/sort的图书馆。它实现了许多算法,因此您可以使用最适合您数据的算法。它似乎是可插入的,并声称速度比qsort快。
  • 找到另一个排序库。可以做路易斯&#39; Radix Sort是一个很好的建议。

请注意,您也可以使用单个分支而不是两个分支进行比较。找出哪个更大,然后减去。

答案 2 :(得分:-3)

也许有些人?:而不是ifs会让事情变得更快。