我已经搜索了一个解决方案来确定使用einsum的numpy数组的距离,这些数组的行数不相同,但列数相等。我尝试了各种组合,但我能成功的唯一方法是使用以下代码。我显然遗漏了一些东西,文献和众多主题并没有让我更接近解决方案。我希望找到一个通用性,使得起源可以是任何数字的目标数组的任何数字。我只使用2D数组,无意将其扩展到其他维度。我也熟悉pdist和cdist以及其他达到我想要的解决方案的方法,但是,我只对einsum感兴趣,因为我想要完善我的一些例子。任何帮助将不胜感激。
import numpy as np
origs = np.array([[0.,0.],[1.,0.],[0.,1.],[1.,1.]])
dests = np.asarray([[4.,0.],[1.,1.],[2.,2.],[2.,3.],[0.,5.]])
for i in origs:
d =np.sqrt(np.einsum("ij,ij->i", i-dests, i-dests))
print("orig {}...dist: {}".format(i,d))
我正在寻找以下结果......
orig [ 0. 0.]...dist: [ 4. 1.41421356 2.82842712 3.60555128 5. ]
orig [ 1. 0.]...dist: [ 3. 1. 2.23606798 3.16227766 5.09901951]
orig [ 0. 1.]...dist: [ 4.12310563 1. 2.23606798 2.82842712 4. ]
orig [ 1. 1.]...dist: [ 3.16227766 0. 1.41421356 2.23606798 4.12310563]
答案 0 :(得分:7)
如果我正确理解了这个问题,那么在考虑2D数组时,你发布的for循环代码对我来说是通用的。现在,如果您希望通过一次调用np.einsum
来获得通用矢量化解决方案,则可以将broadcasting
引入游戏中,就像这样 -
d_all = np.sqrt(np.einsum('ijk->ij',(origs[:,None,:] - dests)**2))
示例运行 -
In [85]: origs = np.array([[0.,0.],[1.,0.],[0.,1.],[1.,1.]])
...: dests = np.asarray([[4.,0.],[1.,1.],[2.,2.],[2.,3.],[0.,5.]])
...:
In [86]: for i in origs:
...: d =np.sqrt(np.einsum("ij,ij->i", i-dests, i-dests))
...: print(d)
...:
[ 4. 1.41421356 2.82842712 3.60555128 5. ]
[ 3. 1. 2.23606798 3.16227766 5.09901951]
[ 4.12310563 1. 2.23606798 2.82842712 4. ]
[ 3.16227766 0. 1.41421356 2.23606798 4.12310563]
In [87]: np.sqrt(np.einsum('ijk->ij',(origs[:,None,:] - dests)**2))
Out[87]:
array([[ 4. , 1.41421356, 2.82842712, 3.60555128, 5. ],
[ 3. , 1. , 2.23606798, 3.16227766, 5.09901951],
[ 4.12310563, 1. , 2.23606798, 2.82842712, 4. ],
[ 3.16227766, 0. , 1.41421356, 2.23606798, 4.12310563]])
根据comments by @hpaulj
,你也可以使用np.einsum
本身进行平方,就像这样 -
subts = origs[:,None,:] - dests
d_all = np.sqrt(np.einsum('ijk,ijk->ij',subts,subts))
这是一个运行时测试,用于将此与之前在squaring
之外np.einsum
完成的方法进行比较 -
In [7]: def all_einsum(origs,dests):
...: subts = origs[:,None,:] - dests
...: return np.sqrt(np.einsum('ijk,ijk->ij',subts,subts))
...:
...: def partial_einsum(origs,dests):
...: return np.sqrt(np.einsum('ijk->ij',(origs[:,None,:] - dests)**2))
...:
In [8]: origs = np.random.rand(400,100)
In [9]: dests = np.random.rand(500,100)
In [10]: %timeit all_einsum(origs,dests)
10 loops, best of 3: 139 ms per loop
In [11]: %timeit partial_einsum(origs,dests)
1 loops, best of 3: 251 ms per loop