R:日期之间的天数

时间:2015-08-21 17:30:45

标签: r date seq

我有以下数据框:

AllDays  
2012-01-01  
2012-01-02  
2012-01-03  
...  
2015-08-18  

Leases 
StartDate  EndDate
2012-01-01 2013-01-01  
2012-05-07 2013-05-06  
2013-09-05 2013-12-01   

我想要做的是,对于allDays数据帧中的每个日期,计算有效的租约数量。例如如果有4个租约的开始日期< = 2015-01-01和结束日期> = 2015-01-01,那么我想在该数据帧中放置一个4。

我有以下代码

  for (i in 1:nrow(leases))
  {
    occupied = seq(leases$StartDate[i],leases$EndDate[i],by="days")
    occupied = occupied[occupied < dateOfInt]
    matching = match(occupied,allDays$Date)
    allDays$Occupancy[matching] = allDays$Occupancy[matching] + 1
  }

有效,但由于我有大约5000个租约,大约需要1.1秒。有没有人有更有效的方法需要更少的计算时间? 利息日仅为当前日期,仅用于确保其未来的租约日期不计算。

5 个答案:

答案 0 :(得分:5)

这正是foverlaps闪耀的问题:基于另一个data.frame(foverlaps似乎是为此目的而定制的)对data.frame进行子集化。

基于@ MichaelChirico的数据。

setkey(days[, AllDays1:=AllDays,], AllDays, AllDays1)
setkey(leases, StartDate, EndDate)
foverlaps(leases, days)[, .(lease_count=.N), AllDays]
#   user  system elapsed 
#  0.114   0.018   0.136
# @MichaelChirico's approach
#   user  system elapsed 
#  0.909   0.000   0.907 

Here简要解释了@Arun是如何运作的,这让我开始使用data.table

答案 1 :(得分:4)

使用seq几乎肯定效率低下 - 假设您的数据租约长达10000年。 seq将永远带回并返回对我们无关紧要的10000 * 365-1天。然后我们必须使用%in%,这也会进行相同数量的不必要的比较。

我不确定以下是最好的方法(我确信这是一个完全矢量化的解决方案),但它更接近问题的核心。

数据

set.seed(102349)
days<-data.frame(AllDays=seq(as.Date("2012-01-01"),
                             as.Date("2015-08-18"),"day"))

leases<-data.frame(StartDate=sample(days$AllDays,5000L,T))
leases$EndDate<-leases$StartDate+round(rnorm(5000,mean=365,sd=100))

方法

使用data.tablesapply

library(data.table)
setDT(leases); setDT(days)

days[,lease_count:=
       sapply(AllDays,function(x)
         leases[StartDate<=x&EndDate>=x,.N])][]
         AllDays lease_count
   1: 2012-01-01           5
   2: 2012-01-02           8
   3: 2012-01-03          11
   4: 2012-01-04          16
   5: 2012-01-05          18
  ---                       
1322: 2015-08-14        1358
1323: 2015-08-15        1358
1324: 2015-08-16        1360
1325: 2015-08-17        1363
1326: 2015-08-18        1359

答案 2 :(得分:2)

如果没有您的数据,我无法测试这是否更快,但它可以用更少的代码完成工作:

for (i in 1:nrow(AllDays)) AllDays$tally[i] = sum(AllDays$AllDays[i] >= Leases$Start.Date & AllDays$AllDays[i] <= Leases$End.Date)

我使用以下方法进行测试;请注意,两个数据框中的相关列都格式化为日期:

AllDays = data.frame(AllDays = seq(from=as.Date("2012-01-01"), to=as.Date("2015-08-18"), by=1))
Leases = data.frame(Start.Date = as.Date(c("2013-01-01", "2012-08-20", "2014-06-01")), End.Date = as.Date(c("2013-12-31", "2014-12-31", "2015-05-31")))

答案 3 :(得分:1)

另一种方法,但我不确定它的速度更快。

library(lubridate)
library(dplyr)

AllDays = data.frame(dates = c("2012-02-01","2012-03-02","2012-04-03"))

Lease = data.frame(start = c("2012-01-03","2012-03-01","2012-04-02"),
                   end = c("2012-02-05","2012-04-15","2012-07-11"))

# transform to dates
AllDays$dates = ymd(AllDays$dates)
Lease$start = ymd(Lease$start)
Lease$end = ymd(Lease$end)

# create the range id
Lease$id = 1:nrow(Lease)

AllDays

#        dates
# 1 2012-02-01
# 2 2012-03-02
# 3 2012-04-03

Lease

#       start        end id
# 1 2012-01-03 2012-02-05  1
# 2 2012-03-01 2012-04-15  2
# 3 2012-04-02 2012-07-11  3


data.frame(expand.grid(AllDays$dates,Lease$id)) %>%      # create combinations of dates and ranges
  select(dates=Var1, id=Var2) %>%
  inner_join(Lease, by="id") %>%                         # join information
  rowwise %>%
  do(data.frame(dates=.$dates,
                flag = ifelse(.$dates %in% seq(.$start,.$end,by="1 day"),1,0))) %>%     # create ranges and check if the date is in there
  ungroup %>%
  group_by(dates) %>%
  summarise(N=sum(flag))

#        dates N
# 1 2012-02-01 1
# 2 2012-03-02 1
# 3 2012-04-03 2

答案 4 :(得分:0)

尝试使用lubridate包。为每个租约创建一个间隔。然后计算每个日期所在的租约间隔。

# make some data
AllDays <- data.frame("Days" = seq.Date(as.Date("2012-01-01"), as.Date("2012-02-01"), by = 1))
Leases <- data.frame("StartDate" = as.Date(c("2012-01-01", "2012-01-08")),
                 "EndDate" = as.Date(c("2012-01-10", "2012-01-21")))
library(lubridate)

x <- new_interval(Leases$StartDate, Leases$EndDate, tzone = "UTC")
AllDays$NumberInEffect <- sapply(AllDays$Days, function(a){sum(a %within% x)})

输出

head(AllDays)
        Days NumberInEffect
1 2012-01-01              1
2 2012-01-02              1
3 2012-01-03              1
4 2012-01-04              1
5 2012-01-05              1
6 2012-01-06              1