根据一些boost phoenix函数的结果,是否有一种很好的方法可以使语法非终结符号被解析不同?
在我的用例中,我有一个语法,其中包括CPP风格的#define指令和#ifdef #else #endif指令。 (它实际上并不是C预处理器,尽管它只是由其他人做出的一些粗略的模仿。)当我在qi中解析它时,我将我的语法(在它的ctor中)传递给一个适用于融合的“预处理器数据库”对象的引用结构,我已经改编了凤凰功能,允许添加PP定义/检查PP定义。我已经这样做了#define指令有一个语义动作来记录新的定义。
当我尝试实现#ifdef #else指令时,我不确定应该做什么。我能想到的唯一方法是向我的所有语法非终结符的所有属性类型添加一个布尔标志,标记它是否在丢弃的#ifdef分支中,并且在我的AST被解析之后然后爬行再一次,折腾标记的家伙。但那非常不优雅,必须有更好的方法,对吗?
如果可能,我希望能够跟踪原始行号(在ifdef解析之前)。
我希望这个问题很明确,如果不是我可以做一个最小的例子来展示我正在尝试做什么,但我的实际语法很大。
编辑:好的,我做了一个SSCCE:
所以这里有一个解析非常简单的对语法的程序,并且有一些最小的预处理器语言,包括define和ifdef。我理解如何使用语义动作,以便匹配的东西导致C ++回调被触发,并且该部分似乎正在工作。然而,我不明白的是如何使用回调将信息反馈到语法中,即“如果这个凤凰函数返回false,则以不同的方式解析”。我想知道怎么说“如果这个凤凰函数返回boolean false作为这个语义动作的一部分,那么随意声明非终结者不会匹配和回溯。”实际上现在我正在编写所有这些我想我知道“迷你XML”示例必须以某种方式执行此操作,因为它使用局部变量来强制启动和关闭标记必须匹配?所以我想我可以对它的工作方式进行逆向工程。但显然我还没有弄清楚阅读文档/研究这些例子。
请注意,我认为它与您的第一个建议不同,只是制作一个跳过语法。问题是我不知道如何使跳过语法的行为依赖于增强凤凰函数的输出,这又是同样的问题。我现在唯一知道如何处理qi内部的凤凰,就是使用火虚空回调,并将得到的东西分配给属性值。
#define BOOST_SPIRIT_USE_PHOENIX_V3
#include <boost/config/warning_disable.hpp>
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_object.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/spirit/include/phoenix_fusion.hpp>
#include <boost/spirit/include/phoenix_stl.hpp>
#include <boost/fusion/adapted/struct/adapt_struct.hpp>
#include <boost/fusion/include/adapt_struct.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <boost/variant/recursive_variant.hpp>
#include <cassert>
#include <cmath>
#include <memory>
#include <string>
#include <utility>
#include <vector>
namespace fusion = boost::fusion;
namespace phoenix = boost::phoenix;
namespace qi = boost::spirit::qi;
namespace ascii = boost::spirit::ascii;
typedef std::string pp_sym;
typedef std::set<pp_sym> pp_data;
void add(pp_data & defines, const pp_sym & s) { defines.insert(s); }
void remove(pp_data & defines, const pp_sym & s) { defines.erase(s); }
bool search(pp_data & defines, const pp_sym & s) { return defines.count(s); }
BOOST_PHOENIX_ADAPT_FUNCTION(void, pp_add_define_, add, 2);
BOOST_PHOENIX_ADAPT_FUNCTION(void, pp_remove_define_, remove, 2);
BOOST_PHOENIX_ADAPT_FUNCTION(bool, pp_search_define_, search, 2);
typedef std::string Str;
typedef std::pair<Str, Str> Pair;
typedef std::vector<Pair> PairVec;
/***
* Grammar definitions
*/
template <typename Iterator>
struct simple_grammar : qi::grammar<Iterator, PairVec()> {
qi::rule<Iterator, PairVec()> main;
qi::rule<Iterator, Pair()> pair;
qi::rule<Iterator, Str()> first;
qi::rule<Iterator, Str()> second;
qi::rule<Iterator, pp_sym()> pp_symbol;
qi::rule<Iterator> pp_directive;
qi::rule<Iterator, pp_sym()> define_directive;
qi::rule<Iterator, pp_sym()> undef_directive;
qi::rule<Iterator, pp_sym()> if_directive;
qi::rule<Iterator> else_directive;
qi::rule<Iterator> endif_directive;
qi::rule<Iterator> ws;
simple_grammar(pp_data & preprocessor_data)
: simple_grammar::base_type(main)
{
using qi::lit;
using qi::char_;
using namespace qi::labels;
ws = char_(" \t\r\n");
first = !lit('#') >> *(char_ - '=') >> lit('=');
second = *(char_ - '\n') >> lit('\n');
pair = first >> second;
pp_symbol = +char_("A-Za-z_");
pp_directive = &lit('#')
>> ((define_directive [ pp_add_define_(ref(preprocessor_data), _1) ] )
| (undef_directive [ pp_remove_define_(ref(preprocessor_data), _1) ] )
| if_directive // [ ??? ]
| else_directive
| endif_directive)
>> *(char_ - '\n') >> lit('\n');
main = (pp_directive >> -main) | (pair >> -main);
define_directive = lit("#define ") >> pp_symbol >> &ws;
undef_directive = lit("#undef ") >> pp_symbol >> &ws;
if_directive = lit("#ifdef ") >> pp_symbol >> &ws;
else_directive = lit("#else");
endif_directive = lit("#endif");
}
};
const char * example_1 = ""
"#define FOO\n"
"led_zeppelin=9\n"
"the_shins=9\n"
"dead_mau5=6\n"
"portishead=10\n"
"#ifdef FOO\n"
"foo_fighters=7\n"
"#else\n"
"the_who=6\n"
"#endif\n"
"kanye_west=4\n"
"#undef FOO\n"
"#define BAR\n";
int main() {
std::string temp{example_1};
typedef std::string::const_iterator str_it;
typedef simple_grammar<str_it> my_grammar;
pp_data defines;
my_grammar gram(defines); // Our grammar
PairVec ast; // Our tree
str_it it = temp.begin();
str_it end = temp.end();
bool b = qi::parse(it, end, gram, ast);
assert(b);
assert(defines.count("FOO") == 0);
assert(defines.count("BAR") == 1);
std::cout << "Parsed a list:\n\n";
for( const auto & p : ast) {
std::cout << p.first << "\n\t\t\t=\t" << p.second << std::endl;
}
return 0;
}
对我来说,上面的输出是(如预期的那样):
$ ./main
Parsed a list:
led_zeppelin
= 9
the_shins
= 9
dead_mau5
= 6
portishead
= 10
foo_fighters
= 7
the_who
= 6
kanye_west
= 4
但是,我想做的是让ifdef部分按照你自然期望的那样做,并允许嵌套的ifdef子句。
答案 0 :(得分:2)
回应问题中添加的“SSCCE”代码:
正确处理嵌套定义的唯一方法(包括条件块包含#define
/ #undef
指令的情况!)是使用代表块¹树的AST:
namespace Common {
typedef std::string pp_sym;
}
namespace Ast {
using Common::pp_sym;
typedef std::string Str;
typedef std::pair<Str, Str> Pair;
typedef std::vector<Pair> Pairs;
struct ConditionalBlock;
namespace tag {
struct define;
struct undefine;
}
template <typename Tag> struct Directive {
pp_sym name;
};
typedef Directive<tag::define> Define;
typedef Directive<tag::undefine> Undef;
typedef boost::make_recursive_variant<
Pairs,
boost::recursive_wrapper<ConditionalBlock>,
Define,
Undef
>::type Block;
typedef std::vector<Block> Blocks;
struct ConditionalBlock {
pp_sym required;
Blocks if_, else_;
};
}
为了便于在不使用语义操作的情况下解析这些内容:
BOOST_FUSION_ADAPT_TPL_STRUCT((Tag), (Ast::Directive)(Tag), name)
BOOST_FUSION_ADAPT_STRUCT(Ast::ConditionalBlock, required, if_, else_)
完成。
由于上述工作,我们现在可以完全按照我们的喜好定义解析器!
注意:
seek[eol]
忽略直到行尾distinct
来解析标识符(请参阅boost::spirit::qi keywords and identifiers)#else
可选(见-else
)无需任何工作即可启用调试信息
start = skip(blank) [ blocks ];
blocks = *block;
block = define | undef | conditional_block | +pair;
pair = !char_("#") >> +~char_("=\r\n") >> '=' >> *(char_ - eol) >> *eol;
pp_symbol = qr::distinct(char_("A-Za-z_")) [ +char_("A-Za-z_") ];
define = '#' >> distinct(alnum | '_') [ "define" ] >> pp_symbol >> seek[*eol];
undef = '#' >> distinct(alnum | '_') [ "undef" ] >> pp_symbol >> seek[*eol];
else_ = '#' >> distinct(alnum | '_') [ "else" ] >> seek[*eol];
endif = '#' >> distinct(alnum | '_') [ "endif" ] >> seek[*eol];
conditional_block =
('#' >> distinct(alnum | '_') [ "ifdef" ] >> pp_symbol >> seek[*eol])
>> *(!(else_|endif) >> block)
>> -else_
>> *(!endif >> block)
>> endif
;
BOOST_SPIRIT_DEBUG_NODES((start)(blocks)(block)(pair)(pp_symbol)(define)(undef)(else_)(endif)(conditional_block))
我认为这是非常清晰的,它导致包含您以后可能想要使用的所有信息的ast
既然我们已将处理与解析分开,那么处理就是对树的单一访问。我们使用单个函数对象Logic::Preprocessor
,它兼作变体访问者:
Logic::Preprocess pp({{"EXTERNAL"}} , " ");
pp(ast);
在此示例中,我们从定义的预处理程序符号EXTERNAL
开始(就好像它是在“外部”定义的,就像在命令行上一样)。
访问者的实现非常简单,但是让我展示一下动作位,即采用条件和忽略分支的位置。为了使事情变得非常完整,我甚至遍历不满意的分支,只是为了表明完整的AST存在,但是使用函数对象的en isolated
实例,所以没有效果:
void operator()(Ast::ConditionalBlock const& cb) const {
bool const satisfied = ctx.defined.count(cb.required);
auto old_indent = indent;
indent += "\t";
std::cout << old_indent << "#ifdef " << cb.required << " // " << std::boolalpha << satisfied << "\n";
Preprocess isolated{ctx, indent+"// "}; // prevent changes to ctx to affect us for the non-matching branch
(satisfied? *this : isolated)(cb.if_);
std::cout << old_indent << "#else " << " // ifdef " << cb.required << "\n";
(satisfied? isolated : *this)(cb.else_);
std::cout << old_indent << "#endif " << " // ifdef " << cb.required << "\n";
indent.resize(indent.size()-1);
}
void operator()(Ast::Define const& directive) const {
ctx.defined.insert(directive.name);
std::cout << indent << "#define\t" << directive.name;
report();
}
void operator()(Ast::Undef const& directive) const {
ctx.defined.erase(directive.name);
std::cout << indent << "#undef\t" << directive.name;
report();
}
观察这个文档是如何正确解释的,它甚至嵌套条件块并在条件分支中定义符号(因此,有条件地):
#define FOO
led_zeppelin=9
the_shins=9
dead_mau5=6
portishead=10
#ifdef FOO
foo_fighters=7
#define ZOO
#else
the_who=6
#define QUX
#endif
#ifdef EXTERNAL
#ifdef ZOO
zoowasdefined=yes
#else
zoowasdefined=no
#endif
#ifdef QUX
quxwasdefined=yes
#else
quxwasdefined=no
#endif
#endif
kanye_west=4
#undef FOO
#define BAR
我们的演示程序打印: Live On Coliru
Preprocess results:
#define FOO // effective: EXTERNAL FOO
led_zeppelin=9
the_shins=9
dead_mau5=6
portishead=10
#ifdef FOO // true
foo_fighters=7
#define ZOO // effective: EXTERNAL FOO ZOO
#else // ifdef FOO
// the_who=6
// #define QUX // effective: EXTERNAL FOO QUX
#endif // ifdef FOO
#ifdef EXTERNAL // true
#ifdef ZOO // true
zoowasdefined=yes
#else // ifdef ZOO
// zoowasdefined=no
#endif // ifdef ZOO
#ifdef QUX // false
// quxwasdefined=yes
#else // ifdef QUX
quxwasdefined=no
#endif // ifdef QUX
#else // ifdef EXTERNAL
#endif // ifdef EXTERNAL
kanye_west=4
#undef FOO // effective: EXTERNAL ZOO
#define BAR // effective: BAR EXTERNAL ZOO
Defines still in effect: BAR EXTERNAL ZOO
<强> Live On Coliru 强>
#define BOOST_SPIRIT_USE_PHOENIX_V3
//#define BOOST_SPIRIT_DEBUG
#include <boost/fusion/adapted.hpp>
#include <boost/spirit/include/phoenix.hpp>
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/repository/include/qi_distinct.hpp>
#include <boost/spirit/repository/include/qi_seek.hpp>
#include <boost/variant.hpp>
#include <cassert>
namespace phx = boost::phoenix;
namespace qi = boost::spirit::qi;
namespace qr = boost::spirit::repository::qi;
namespace Common {
typedef std::string pp_sym;
}
namespace Ast {
using Common::pp_sym;
typedef std::string Str;
typedef std::pair<Str, Str> Pair;
typedef std::vector<Pair> Pairs;
struct ConditionalBlock;
namespace tag {
struct define;
struct undefine;
}
template <typename Tag> struct Directive {
pp_sym name;
};
typedef Directive<tag::define> Define;
typedef Directive<tag::undefine> Undef;
typedef boost::make_recursive_variant<
Pairs,
boost::recursive_wrapper<ConditionalBlock>,
Define,
Undef
>::type Block;
typedef std::vector<Block> Blocks;
struct ConditionalBlock {
pp_sym required;
Blocks if_, else_;
};
}
BOOST_FUSION_ADAPT_TPL_STRUCT((Tag), (Ast::Directive)(Tag), name)
BOOST_FUSION_ADAPT_STRUCT(Ast::ConditionalBlock, required, if_, else_)
/***
* Grammar definitions
*/
template <typename Iterator>
struct simple_grammar : qi::grammar<Iterator, Ast::Blocks()> {
simple_grammar() : simple_grammar::base_type(start)
{
using namespace qi;
using qr::distinct;
using qr::seek;
start = skip(blank) [ blocks ];
blocks = *block;
block = define | undef | conditional_block | +pair;
pair = +~char_("=\r\n") >> '=' >> *(char_ - eol) >> *eol;
pp_symbol = qr::distinct(char_("A-Za-z_")) [ +char_("A-Za-z_") ];
define = '#' >> distinct(alnum | '_') [ "define" ] >> pp_symbol >> seek[*eol];
undef = '#' >> distinct(alnum | '_') [ "undef" ] >> pp_symbol >> seek[*eol];
else_ = '#' >> distinct(alnum | '_') [ "else" ] >> seek[*eol];
endif = '#' >> distinct(alnum | '_') [ "endif" ] >> seek[*eol];
conditional_block =
('#' >> distinct(alnum | '_') [ "ifdef" ] >> pp_symbol >> seek[*eol])
>> *(!(else_|endif) >> block)
>> -else_
>> *(!endif >> block)
>> endif
;
BOOST_SPIRIT_DEBUG_NODES((start)(blocks)(block)(pair)(pp_symbol)(define)(undef)(else_)(endif)(conditional_block))
}
private:
using Skipper = qi::blank_type;
qi::rule<Iterator, Ast::Blocks()> start;
qi::rule<Iterator, Ast::Blocks(), Skipper> blocks;
qi::rule<Iterator, Ast::Block(), Skipper> block;
// directive
qi::rule<Iterator, Ast::ConditionalBlock(), Skipper> conditional_block;
qi::rule<Iterator, Ast::Define(), Skipper> define;
qi::rule<Iterator, Ast::Undef(), Skipper> undef;
// empty directives
qi::rule<Iterator, Skipper> else_, endif;
// lexeme
qi::rule<Iterator, Ast::Pair()> pair;
qi::rule<Iterator, Ast::pp_sym()> pp_symbol;
};
namespace Logic {
using Common::pp_sym;
typedef std::set<pp_sym> pp_syms;
struct context {
pp_syms defined;
};
struct Preprocess : boost::static_visitor<void> {
context ctx;
std::string indent;
Preprocess(context ctx = {}, std::string indent = "")
: ctx(std::move(ctx)), indent(std::move(indent))
{ }
void operator()(Ast::Blocks const& blocks) {
for (auto& b : blocks)
boost::apply_visitor(*this, b);
}
void operator()(Ast::Block const& block) {
boost::apply_visitor(*this, block);
}
void operator()(Ast::Pairs const& pairs) {
for (auto& p : pairs)
std::cout << indent << p.first << "=" << p.second << "\n";
}
void operator()(Ast::ConditionalBlock const& cb) {
bool const satisfied = ctx.defined.count(cb.required);
auto old_indent = indent;
indent += "\t";
std::cout << old_indent << "#ifdef " << cb.required << " // " << std::boolalpha << satisfied << "\n";
Preprocess isolated{ctx, indent+"// "}; // prevent changes to ctx to affect us for the non-matching branch
(satisfied? *this : isolated)(cb.if_);
std::cout << old_indent << "#else " << " // ifdef " << cb.required << "\n";
(satisfied? isolated : *this)(cb.else_);
std::cout << old_indent << "#endif " << " // ifdef " << cb.required << "\n";
indent.resize(indent.size()-1);
}
void operator()(Ast::Define const& directive) {
ctx.defined.insert(directive.name);
std::cout << indent << "#define\t" << directive.name;
report();
}
void operator()(Ast::Undef const& directive) {
ctx.defined.erase(directive.name);
std::cout << indent << "#undef\t" << directive.name;
report();
}
private:
void report() const {
std::cout << "\t// effective: ";
for (auto& sym : ctx.defined) std::cout << sym << " ";
std::cout << "\n";
}
};
}
int main() {
typedef boost::spirit::istream_iterator It;
typedef simple_grammar<It> my_grammar;
my_grammar gram; // Our grammar
Ast::Blocks ast; // Our tree
It it(std::cin >> std::noskipws), end;
bool b = qi::parse(it, end, gram, ast);
if (it != end)
std::cout << "Remaining input: '" << std::string(it, end) << "'\n";
assert(b);
std::cout << "Preprocess results:\n\n";
Logic::Preprocess pp({{"EXTERNAL"}} , " ");
pp(ast);
std::cout << "\n\nDefines still in effect: ";
for (auto& sym : pp.ctx.defined) std::cout << sym << " ";
}
除上述输出外,启用调试信息还会生成以下详细跟踪信息:
<start>
<try>#define FOO\nled_zepp</try>
<blocks>
<try>#define FOO\nled_zepp</try>
<block>
<try>#define FOO\nled_zepp</try>
<define>
<try>#define FOO\nled_zepp</try>
<pp_symbol>
<try>FOO\nled_zeppelin=9\nt</try>
<success>\nled_zeppelin=9\nthe_</success>
<attributes>[[F, O, O]]</attributes>
</pp_symbol>
<success>led_zeppelin=9\nthe_s</success>
<attributes>[[[F, O, O]]]</attributes>
</define>
<success>led_zeppelin=9\nthe_s</success>
<attributes>[[[F, O, O]]]</attributes>
</block>
<block>
<try>led_zeppelin=9\nthe_s</try>
<define>
<try>led_zeppelin=9\nthe_s</try>
<fail/>
</define>
<undef>
<try>led_zeppelin=9\nthe_s</try>
<fail/>
</undef>
<conditional_block>
<try>led_zeppelin=9\nthe_s</try>
<fail/>
</conditional_block>
<pair>
<try>led_zeppelin=9\nthe_s</try>
<success>the_shins=9\ndead_mau</success>
<attributes>[[[l, e, d, _, z, e, p, p, e, l, i, n], [9]]]</attributes>
</pair>
<pair>
<try>the_shins=9\ndead_mau</try>
<success>dead_mau5=6\nportishe</success>
<attributes>[[[t, h, e, _, s, h, i, n, s], [9]]]</attributes>
</pair>
<pair>
<try>dead_mau5=6\nportishe</try>
<success>portishead=10\n#ifdef</success>
<attributes>[[[d, e, a, d, _, m, a, u, 5], [6]]]</attributes>
</pair>
<pair>
<try>portishead=10\n#ifdef</try>
<success>#ifdef FOO\nfoo_fight</success>
<attributes>[[[p, o, r, t, i, s, h, e, a, d], [1, 0]]]</attributes>
</pair>
<pair>
<try>#ifdef FOO\nfoo_fight</try>
<fail/>
</pair>
<success>#ifdef FOO\nfoo_fight</success>
<attributes>[[[[l, e, d, _, z, e, p, p, e, l, i, n], [9]], [[t, h, e, _, s, h, i, n, s], [9]], [[d, e, a, d, _, m, a, u, 5], [6]], [[p, o, r, t, i, s, h, e, a, d], [1, 0]]]]</attributes>
</block>
<block>
<try>#ifdef FOO\nfoo_fight</try>
<define>
<try>#ifdef FOO\nfoo_fight</try>
<fail/>
</define>
<undef>
<try>#ifdef FOO\nfoo_fight</try>
<fail/>
</undef>
<conditional_block>
<try>#ifdef FOO\nfoo_fight</try>
<pp_symbol>
<try>FOO\nfoo_fighters=7\n#</try>
<success>\nfoo_fighters=7\n#def</success>
<attributes>[[F, O, O]]</attributes>
</pp_symbol>
<else_>
<try>foo_fighters=7\n#defi</try>
<fail/>
</else_>
<endif>
<try>foo_fighters=7\n#defi</try>
<fail/>
</endif>
<block>
<try>foo_fighters=7\n#defi</try>
<define>
<try>foo_fighters=7\n#defi</try>
<fail/>
</define>
<undef>
<try>foo_fighters=7\n#defi</try>
<fail/>
</undef>
<conditional_block>
<try>foo_fighters=7\n#defi</try>
<fail/>
</conditional_block>
<pair>
<try>foo_fighters=7\n#defi</try>
<success>#define ZOO\n#else\nth</success>
<attributes>[[[f, o, o, _, f, i, g, h, t, e, r, s], [7]]]</attributes>
</pair>
<pair>
<try>#define ZOO\n#else\nth</try>
<fail/>
</pair>
<success>#define ZOO\n#else\nth</success>
<attributes>[[[[f, o, o, _, f, i, g, h, t, e, r, s], [7]]]]</attributes>
</block>
<else_>
<try>#define ZOO\n#else\nth</try>
<fail/>
</else_>
<endif>
<try>#define ZOO\n#else\nth</try>
<fail/>
</endif>
<block>
<try>#define ZOO\n#else\nth</try>
<define>
<try>#define ZOO\n#else\nth</try>
<pp_symbol>
<try>ZOO\n#else\nthe_who=6\n</try>
<success>\n#else\nthe_who=6\n#de</success>
<attributes>[[Z, O, O]]</attributes>
</pp_symbol>
<success>#else\nthe_who=6\n#def</success>
<attributes>[[[Z, O, O]]]</attributes>
</define>
<success>#else\nthe_who=6\n#def</success>
<attributes>[[[Z, O, O]]]</attributes>
</block>
<else_>
<try>#else\nthe_who=6\n#def</try>
<success>the_who=6\n#define QU</success>
<attributes>[]</attributes>
</else_>
<else_>
<try>#else\nthe_who=6\n#def</try>
<success>the_who=6\n#define QU</success>
<attributes>[]</attributes>
</else_>
<endif>
<try>the_who=6\n#define QU</try>
<fail/>
</endif>
<block>
<try>the_who=6\n#define QU</try>
<define>
<try>the_who=6\n#define QU</try>
<fail/>
</define>
<undef>
<try>the_who=6\n#define QU</try>
<fail/>
</undef>
<conditional_block>
<try>the_who=6\n#define QU</try>
<fail/>
</conditional_block>
<pair>
<try>the_who=6\n#define QU</try>
<success>#define QUX\n#endif\n\n</success>
<attributes>[[[t, h, e, _, w, h, o], [6]]]</attributes>
</pair>
<pair>
<try>#define QUX\n#endif\n\n</try>
<fail/>
</pair>
<success>#define QUX\n#endif\n\n</success>
<attributes>[[[[t, h, e, _, w, h, o], [6]]]]</attributes>
</block>
<endif>
<try>#define QUX\n#endif\n\n</try>
<fail/>
</endif>
<block>
<try>#define QUX\n#endif\n\n</try>
<define>
<try>#define QUX\n#endif\n\n</try>
<pp_symbol>
<try>QUX\n#endif\n\n#ifdef E</try>
<success>\n#endif\n\n#ifdef EXTE</success>
<attributes>[[Q, U, X]]</attributes>
</pp_symbol>
<success>#endif\n\n#ifdef EXTER</success>
<attributes>[[[Q, U, X]]]</attributes>
</define>
<success>#endif\n\n#ifdef EXTER</success>
<attributes>[[[Q, U, X]]]</attributes>
</block>
<endif>
<try>#endif\n\n#ifdef EXTER</try>
<success>#ifdef EXTERNAL\n\n#if</success>
<attributes>[]</attributes>
</endif>
<endif>
<try>#endif\n\n#ifdef EXTER</try>
<success>#ifdef EXTERNAL\n\n#if</success>
<attributes>[]</attributes>
</endif>
<success>#ifdef EXTERNAL\n\n#if</success>
<attributes>[[[F, O, O], [[[[f, o, o, _, f, i, g, h, t, e, r, s], [7]]], [[Z, O, O]]], [[[[t, h, e, _, w, h, o], [6]]], [[Q, U, X]]]]]</attributes>
</conditional_block>
<success>#ifdef EXTERNAL\n\n#if</success>
<attributes>[[[F, O, O], [[[[f, o, o, _, f, i, g, h, t, e, r, s], [7]]], [[Z, O, O]]], [[[[t, h, e, _, w, h, o], [6]]], [[Q, U, X]]]]]</attributes>
</block>
<block>
<try>#ifdef EXTERNAL\n\n#if</try>
<define>
<try>#ifdef EXTERNAL\n\n#if</try>
<fail/>
</define>
<undef>
<try>#ifdef EXTERNAL\n\n#if</try>
<fail/>
</undef>
<conditional_block>
<try>#ifdef EXTERNAL\n\n#if</try>
<pp_symbol>
<try>EXTERNAL\n\n#ifdef ZOO</try>
<success>\n\n#ifdef ZOO\nzoowasd</success>
<attributes>[[E, X, T, E, R, N, A, L]]</attributes>
</pp_symbol>
<else_>
<try>#ifdef ZOO\nzoowasdef</try>
<fail/>
</else_>
<endif>
<try>#ifdef ZOO\nzoowasdef</try>
<fail/>
</endif>
<block>
<try>#ifdef ZOO\nzoowasdef</try>
<define>
<try>#ifdef ZOO\nzoowasdef</try>
<fail/>
</define>
<undef>
<try>#ifdef ZOO\nzoowasdef</try>
<fail/>
</undef>
<conditional_block>
<try>#ifdef ZOO\nzoowasdef</try>
<pp_symbol>
<try>ZOO\nzoowasdefined=ye</try>
<success>\nzoowasdefined=yes\n#</success>
<attributes>[[Z, O, O]]</attributes>
</pp_symbol>
<else_>
<try>zoowasdefined=yes\n#e</try>
<fail/>
</else_>
<endif>
<try>zoowasdefined=yes\n#e</try>
<fail/>
</endif>
<block>
<try>zoowasdefined=yes\n#e</try>
<define>
<try>zoowasdefined=yes\n#e</try>
<fail/>
</define>
<undef>
<try>zoowasdefined=yes\n#e</try>
<fail/>
</undef>
<conditional_block>
<try>zoowasdefined=yes\n#e</try>
<fail/>
</conditional_block>
<pair>
<try>zoowasdefined=yes\n#e</try>
<success>#else\nzoowasdefined=</success>
<attributes>[[[z, o, o, w, a, s, d, e, f, i, n, e, d], [y, e, s]]]</attributes>
</pair>
<pair>
<try>#else\nzoowasdefined=</try>
<fail/>
</pair>
<success>#else\nzoowasdefined=</success>
<attributes>[[[[z, o, o, w, a, s, d, e, f, i, n, e, d], [y, e, s]]]]</attributes>
</block>
<else_>
<try>#else\nzoowasdefined=</try>
<success>zoowasdefined=no\n#en</success>
<attributes>[]</attributes>
</else_>
<else_>
<try>#else\nzoowasdefined=</try>
<success>zoowasdefined=no\n#en</success>
<attributes>[]</attributes>
</else_>
<endif>
<try>zoowasdefined=no\n#en</try>
<fail/>
</endif>
<block>
<try>zoowasdefined=no\n#en</try>
<define>
<try>zoowasdefined=no\n#en</try>
<fail/>
</define>
<undef>
<try>zoowasdefined=no\n#en</try>
<fail/>
</undef>
<conditional_block>
<try>zoowasdefined=no\n#en</try>
<fail/>
</conditional_block>
<pair>
<try>zoowasdefined=no\n#en</try>
<success>#endif\n\n#ifdef QUX\nq</success>
<attributes>[[[z, o, o, w, a, s, d, e, f, i, n, e, d], [n, o]]]</attributes>
</pair>
<pair>
<try>#endif\n\n#ifdef QUX\nq</try>
<fail/>
</pair>
<success>#endif\n\n#ifdef QUX\nq</success>
<attributes>[[[[z, o, o, w, a, s, d, e, f, i, n, e, d], [n, o]]]]</attributes>
</block>
<endif>
<try>#endif\n\n#ifdef QUX\nq</try>
<success>#ifdef QUX\nquxwasdef</success>
<attributes>[]</attributes>
</endif>
<endif>
<try>#endif\n\n#ifdef QUX\nq</try>
<success>#ifdef QUX\nquxwasdef</success>
<attributes>[]</attributes>
</endif>
<success>#ifdef QUX\nquxwasdef</success>
<attributes>[[[Z, O, O], [[[[z, o, o, w, a, s, d, e, f, i, n, e, d], [y, e, s]]]], [[[[z, o, o, w, a, s, d, e, f, i, n, e, d], [n, o]]]]]]</attributes>
</conditional_block>
<success>#ifdef QUX\nquxwasdef</success>
<attributes>[[[Z, O, O], [[[[z, o, o, w, a, s, d, e, f, i, n, e, d], [y, e, s]]]], [[[[z, o, o, w, a, s, d, e, f, i, n, e, d], [n, o]]]]]]</attributes>
</block>
....
</start>
¹或者你应该有一个相当复杂的树在分析时匹配。毫无疑问,将解析与处理分开。这与Boost Spirit: "Semantic actions are evil"?
密切相关答案 1 :(得分:1)
只需定义一个语法并实现匹配的规则。
你做什么取决于你想对结果做什么。如果目标是忽略该块,只需将语法添加到队长(例如'#ifdef' >> spirit::repository::qi::seek[ qi::eol >> "#endif" >> qi::eol ]
或类似的)
考虑使用Boost Wave,它是一个完整的预处理器,用Spirit编写并且已经附带Boost。
答案 2 :(得分:1)
从阅读精神文档,我认为解决基本问题的正确方法(引用自己)
根据一些boost phoenix函数的结果,是否有一种很好的方法可以使语法非终结符号被解析不同?
是使用boost::spirit::qi::eps
。来自文档(
http://www.boost.org/doc/libs/1_41_0/libs/spirit/doc/html/spirit/qi/reference/auxiliary/eps.html):
语义谓词
语义谓词允许您在语法中的任何位置附加条件函数。在此角色中,epsilon采用返回true或false的Lazy Argument。 Lazy Argument通常是一个测试,用于解决语法中的歧义。当Lazy Argument结果的计算结果为false时,将报告解析失败。否则将报告空匹配。一般形式是:
eps(f) >> rest;
调用Lazy Argument f进行语义测试(例如,检查符号是否在符号表中)。如果test返回true,则将评估rest。否则,制作将在没有接触休息的情况下提前返回。
尝试使用此技术扩展SSCCE并尽快编辑此答案......
好的,这就是我最终的结果。我认为它仍然有一些缺点,比如它不会完全正确处理嵌套的ifdef,而且我的语法有一些代码重复。我认为简短的回答是你不应该尝试在任何甚至中等复杂的语法中实现ifdef,你应该总是进行某种两阶段处理,即使语法非常简单,否则会产生很多问题。但无论如何,我认为这在使用精神方面是一个非常好的练习。
#define BOOST_SPIRIT_USE_PHOENIX_V3
#include <boost/config/warning_disable.hpp>
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_object.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/spirit/include/phoenix_fusion.hpp>
#include <boost/spirit/include/phoenix_stl.hpp>
#include <boost/fusion/adapted/struct/adapt_struct.hpp>
#include <boost/fusion/include/adapt_struct.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <boost/variant/recursive_variant.hpp>
#include <cassert>
#include <cmath>
#include <memory>
#include <string>
#include <utility>
#include <vector>
namespace fusion = boost::fusion;
namespace phoenix = boost::phoenix;
namespace qi = boost::spirit::qi;
namespace ascii = boost::spirit::ascii;
typedef std::string pp_sym;
typedef std::set<pp_sym> pp_data;
void add(pp_data & defines, const pp_sym & s) { /*std::cout << "Parser: #define " << s << std::endl;*/ defines.insert(s); }
void remove(pp_data & defines, const pp_sym & s) { /*std::cout << "Parser: #undef " << s << std::endl;*/ defines.erase(s); }
bool search(pp_data & defines, const pp_sym & s) { /*std::cout << "Parser: #ifdef " << s << std::endl;*/ return defines.count(s); }
BOOST_PHOENIX_ADAPT_FUNCTION(void, pp_add_define_, add, 2);
BOOST_PHOENIX_ADAPT_FUNCTION(void, pp_remove_define_, remove, 2);
BOOST_PHOENIX_ADAPT_FUNCTION(bool, pp_search_define_, search, 2);
typedef std::string Str;
typedef std::pair<Str, Str> Pair;
typedef std::vector<Pair> PairVec;
/***
* Grammar definitions
*/
template <typename Iterator>
struct simple_grammar : qi::grammar<Iterator, PairVec()> {
qi::rule<Iterator, PairVec()> main;
qi::rule<Iterator, PairVec(), qi::locals<std::string>> if_block;
qi::rule<Iterator, PairVec()> if_true_block;
qi::rule<Iterator, PairVec()> if_false_block;
qi::rule<Iterator, Pair()> pair;
qi::rule<Iterator, Str()> first;
qi::rule<Iterator, Str()> second;
qi::rule<Iterator, pp_sym()> pp_symbol;
qi::rule<Iterator> pp_directive;
qi::rule<Iterator, pp_sym()> define_directive;
qi::rule<Iterator, pp_sym()> undef_directive;
qi::rule<Iterator, pp_sym()> if_directive;
qi::rule<Iterator> else_directive;
qi::rule<Iterator> endif_directive;
qi::rule<Iterator> ws;
qi::rule<Iterator> skip_to_eol;
simple_grammar(pp_data & preprocessor_data)
: simple_grammar::base_type(main)
{
using qi::lit;
using qi::char_;
using qi::omit;
using qi::eps;
using namespace qi::labels;
ws = char_(" \t\r\n");
first = !lit('#') >> *(char_ - '=') >> lit('=');
second = *(char_ - '\n') >> lit('\n');
pair = first >> second;
pp_symbol = +char_("A-Za-z_");
skip_to_eol = *(char_ - '\n') >> lit('\n');
pp_directive = &lit('#')
>> ((define_directive [ pp_add_define_(ref(preprocessor_data), _1) ] )
| (undef_directive [ pp_remove_define_(ref(preprocessor_data), _1) ] )
| else_directive
| endif_directive)
>> skip_to_eol;
main = (if_block >> -main) | (pp_directive >> -main) | (pair >> -main);
define_directive = lit("#define ") >> pp_symbol >> &ws;
undef_directive = lit("#undef ") >> pp_symbol >> &ws;
if_directive = lit("#ifdef ") >> pp_symbol >> &ws;
else_directive = lit("#else");
endif_directive = lit("#endif");
if_block = omit[if_directive[_a = _1] ] >> skip_to_eol
>> ((eps( pp_search_define_(ref(preprocessor_data), _a) ) > if_true_block ) | if_false_block)
>> endif_directive >> skip_to_eol;
if_false_block = omit[ *(char_ - else_directive - endif_directive) ] >> -(else_directive >> skip_to_eol >> if_true_block);
if_true_block = !endif_directive >>
( (else_directive >> skip_to_eol >> if_false_block)
| (if_block >> -if_true_block)
| (pp_directive >> -if_true_block)
| (pair >> -if_true_block));
}
};
#define CHECK(C) \
do { \
if (!(C)) { \
std::cout << "Check \"" << #C << "\" failed!" << std::endl; \
} \
} while(0)
#define CHECK_ITS(STR, IT, END) \
do { \
if (IT != END) { \
std::cout << "Failed to fully parse \"" << STR << "\"\n"; \
std::cout << "Stopped at \"" << std::string(IT, END) << "\"" << std::endl; \
} \
} while(0)
typedef std::string::const_iterator str_it;
typedef simple_grammar<str_it> my_grammar;
void unit_test() {
std::cout << " --- unit tests ---" << std::endl;
pp_data defines;
my_grammar gram(defines); // Our grammar
{
std::cout << "test 1\n";
std::string temp = "#define ZED\n";
str_it it = temp.begin();
str_it end = temp.end();
std::string ast;
bool check1 = qi::parse(it, end, gram.define_directive >> gram.skip_to_eol, ast);
CHECK(check1);
CHECK_ITS(temp, it, end);
CHECK(ast == "ZED");
}
{
std::cout << "test 2\n";
std::string temp = "#define ZED\n";
str_it it = temp.begin();
str_it end = temp.end();
bool check1 = qi::parse(it, end, gram.pp_directive);
CHECK(check1);
CHECK_ITS(temp, it, end);
CHECK(defines.count("ZED") == 1);
}
{
std::cout << "test 3\n";
std::string temp = "#undef ZED\n";
str_it it = temp.begin();
str_it end = temp.end();
bool check1 = qi::parse(it, end, gram.pp_directive);
CHECK(check1);
CHECK_ITS(temp, it, end);
CHECK(defines.count("ZED") == 0);
}
std::cout << " --- end unit tests ---" << std::endl;
}
std::ostream & operator << (std::ostream & ss, const PairVec & pv) {
ss << "Parsed a list:\n\n";
for( const auto & p : pv) {
ss << p.first << "\n\t\t\t=\t" << p.second << std::endl;
}
return ss;
}
PairVec test_case(pp_data & defines, int & result, const std::string & temp) {
my_grammar gram(defines); // Our grammar
PairVec ast; // Our tree
str_it it = temp.begin();
str_it end = temp.end();
bool parse_successful = qi::parse(it, end, gram, ast);
CHECK(parse_successful);
CHECK_ITS(temp, it, end);
std::cout << ast;
result |= parse_successful ? 0 : 1;
return ast;
}
bool have_name(const PairVec & pv, const Str & name) {
return pv.end() != std::find_if(pv.begin(), pv.end(), [&](const Pair & p) { return p.first == name; });
}
int main() {
unit_test();
int result = 0;
{
std::cout << "Test case 1" << std::endl;
pp_data defines;
PairVec ast = test_case(defines, result, ""
"#define FOO\n"
"led_zeppelin=9\n"
"the_shins=9\n"
"dead_mau5=6\n"
"portishead=10\n"
"#ifdef FOO\n"
"foo_fighters=7\n"
"#else\n"
"the_who=6\n"
"#endif\n"
"kanye_west=4\n"
"#undef FOO\n"
"#define BAR\n");
CHECK(defines.count("FOO") == 0);
CHECK(defines.count("BAR") == 1);
if (!have_name (ast, "foo_fighters")) { std::cout << "error no foo" << std::endl;}
}
{
std::cout << "Test case 2" << std::endl;
pp_data defines;
PairVec ast = test_case(defines, result, ""
"#define WOO\n"
"led_zeppelin=9\n"
"the_shins=9\n"
"dead_mau5=6\n"
"portishead=10\n"
"#ifdef FOO\n"
"foo_fighters=7\n"
"#else\n"
"the_who=6\n"
"#endif\n"
"kanye_west=4\n"
"#undef FOO\n"
"#define BAR\n"
"#define ZED\n");
CHECK(defines.count("FOO") == 0);
CHECK(defines.count("BAR") == 1);
CHECK(defines.count("WOO") == 1);
CHECK(defines.count("ZED") == 1);
CHECK(defines.count("GOO") == 0);
CHECK(!have_name(ast, "foo_fighters"));
CHECK(have_name(ast, "the_who"));
}
return result;
}