为什么我的Python脚本比R等效脚本慢得多?

时间:2015-08-20 14:45:29

标签: python regex r bigdata text-analysis

注意:这个问题涵盖为什么脚本太慢了。但是,如果您更喜欢那些想要改进某些内容的人,可以查看my post on CodeReview which aims to improve the performance

我正在开发一个破解纯文本文件(.lst)的项目。

文件名(fileName)的名称很重要,因为我将提取node(例如 abessijn )和component(例如WR-PEA) )从他们到数据帧。例子:

abessijn.WR-P-E-A.lst
A-bom.WR-P-E-A.lst
acroniem.WR-P-E-C.lst
acroniem.WR-P-E-G.lst
adapter.WR-P-E-A.lst
adapter.WR-P-E-C.lst
adapter.WR-P-E-G.lst

每个文件由一行或多行组成。每行包含一个句子(在<sentence>标签内)。示例(abessijn.WR-P-E-A.lst)

/home/nobackup/SONAR/COMPACT/WR-P-E-A/WR-P-E-A0000364.data.ids.xml:  <sentence>Vooral mijn abessijn ruikt heerlijk kruidig .. : ) )</sentence>
/home/nobackup/SONAR/COMPACT/WR-P-E-A/WR-P-E-A0000364.data.ids.xml:  <sentence>Mijn abessijn denkt daar heel anders over .. : ) ) Maar mijn kinderen richt ik ook niet af , zit niet in mijn bloed .</sentence>

从每一行中我提取句子,对其进行一些小修改,然后将其称为sentence。接下来是一个名为leftContext的元素,它将node(例如 abessijn )与其来自的句子之间的分割的第一部分。最后,从leftContext开始,我获得了node中的sentence之前的单词,或leftContext中最右边的单词(有一些限制,例如a的选项)用连字符形成的化合物)。例如:

ID | filename             | node | component | precedingWord      | leftContext                               |  sentence
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
1    adapter.WR-P-P-F.lst  adapter  WR-P-P-F   aanpassingseenheid  Een aanpassingseenheid (                      Een aanpassingseenheid ( adapter ) , 
2    adapter.WR-P-P-F.lst  adapter  WR-P-P-F   toestel             Het toestel (                                 Het toestel ( adapter ) draagt zorg voor de overbrenging van gegevens
3    adapter.WR-P-P-F.lst  adapter  WR-P-P-F   de                  de aansluiting tussen de sensor en de         de aansluiting tussen de sensor en de adapter , 
4    airbag.WS-U-E-A.lst   airbag   WS-U-E-A   den                 ja voor den                                   ja voor den airbag op te pompen eh :p
5    airbag.WS-U-E-A.lst   airbag   WS-U-E-A   ne                  Dobby , als ze valt heeft ze dan wel al ne    Dobby , als ze valt heeft ze dan wel al ne airbag hee

该数据框导出为dataset.csv。

之后,我的项目的目的就在眼前:我创建了一个频率表,考虑了nodeprecedingWord。从变量我定义neuternon_neuter,例如(在Python中)

neuter = ["het", "Het"]
non_neuter = ["de","De"]

和其他类别unspecified。当precedingWord是列表中的项目时,将其分配给变量。频率表输出示例:

node    |   neuter   | nonNeuter   | unspecified
-------------------------------------------------
A-bom       0          4             2
acroniem    3          0             2
act         3          2             1

频率列表导出为frequency.csv。

我从R开始,考虑到稍后我会对频率进行一些统计分析。我当前的R脚本(也可用paste):

# ---
# STEP 0: Preparations
  start_time <- Sys.time()
  ## 1. Set working directory in R
    setwd("")

  ## 2. Load required library/libraries
    library(dplyr)
    library(mclm)
    library(stringi)

  ## 3. Create directory where we'll save our dataset(s)
    dir.create("../R/dataset", showWarnings = FALSE)


# ---
# STEP 1: Loop through files, get data from the filename

    ## 1. Create first dataframe, based on filename of all files
    files <- list.files(pattern="*.lst", full.names=T, recursive=FALSE)
    d <- data.frame(fileName = unname(sapply(files, basename)), stringsAsFactors = FALSE)

    ## 2. Create additional columns (word & component) based on filename
    d$node <- sub("\\..+", "", d$fileName, perl=TRUE)
    d$node <- tolower(d$node)
    d$component <- gsub("^[^\\.]+\\.|\\.lst$", "", d$fileName, perl=TRUE)


# ---
# STEP 2: Loop through files again, but now also through its contents
# In other words: get the sentences

    ## 1. Create second set which is an rbind of multiple frames
    ## One two-column data.frame per file
    ## First column is fileName, second column is data from each file
    e <- do.call(rbind, lapply(files, function(x) {
        data.frame(fileName = x, sentence = readLines(x, encoding="UTF-8"), stringsAsFactors = FALSE)
    }))

    ## 2. Clean fileName
     e$fileName <- sub("^\\.\\/", "", e$fileName, perl=TRUE)

    ## 3. Get the sentence and clean
    e$sentence <- gsub(".*?<sentence>(.*?)</sentence>", "\\1", e$sentence, perl=TRUE)
    e$sentence <- tolower(e$sentence)
        # Remove floating space before/after punctuation
        e$sentence <- gsub("\\s(?:(?=[.,:;?!) ])|(?<=\\( ))", "\\1", e$sentence, perl=TRUE)
    # Add space after triple dots ...
      e$sentence <- gsub("\\.{3}(?=[^\\s])", "... ", e$sentence, perl=TRUE)

    # Transform HTML entities into characters
    # It is unfortunate that there's no easier way to do this
    # E.g. Python provides the HTML package which can unescape (decode) HTML
    # characters
        e$sentence <- gsub("&apos;", "'", e$sentence, perl=TRUE)
        e$sentence <- gsub("&amp;", "&", e$sentence, perl=TRUE)
      # Avoid R from wrongly interpreting ", so replace by single quotes
        e$sentence <- gsub("&quot;|\"", "'", e$sentence, perl=TRUE)

      # Get rid of some characters we can't use such as ³ and ¾
      e$sentence <- gsub("[^[:graph:]\\s]", "", e$sentence, perl=TRUE)


# ---
# STEP 3:
# Create final dataframe

  ## 1. Merge d and e by common column name fileName
    df <- merge(d, e, by="fileName", all=TRUE)

  ## 2. Make sure that only those sentences in which df$node is present in df$sentence are taken into account
    matchFunction <- function(x, y) any(x == y)
    matchedFrame <- with(df, mapply(matchFunction, node, stri_split_regex(sentence, "[ :?.,]")))
    df <- df[matchedFrame, ]

  ## 3. Create leftContext based on the split of the word and the sentence
    # Use paste0 to make sure we are looking for the node, not a compound
    # node can only be preceded by a space, but can be followed by punctuation as well
    contexts <- strsplit(df$sentence, paste0("(^| )", df$node, "( |[!\",.:;?})\\]])"), perl=TRUE)
    df$leftContext <- sapply(contexts, `[`, 1)

  ## 4. Get the word preceding the node
    df$precedingWord <- gsub("^.*\\b(?<!-)(\\w+(?:-\\w+)*)[^\\w]*$","\\1", df$leftContext, perl=TRUE)

  ## 5. Improve readability by sorting columns
    df <- df[c("fileName", "component", "precedingWord", "node", "leftContext", "sentence")]

  ## 6. Write dataset to dataset dir
    write.dataset(df,"../R/dataset/r-dataset.csv")


# ---
# STEP 4:
# Create dataset with frequencies

  ## 1. Define neuter and nonNeuter classes
    neuter <- c("het")
    non.neuter<- c("de")

  ## 2. Mutate df to fit into usable frame
    freq <- mutate(df, gender = ifelse(!df$precedingWord %in% c(neuter, non.neuter), "unspecified",
      ifelse(df$precedingWord %in% neuter, "neuter", "non_neuter")))

  ## 3. Transform into table, but still usable as data frame (i.e. matrix)
  ## Also add column name "node"
    freqTable <- table(freq$node, freq$gender) %>%
      as.data.frame.matrix %>%
      mutate(node = row.names(.))

  ## 4. Small adjustements
    freqTable <- freqTable[,c(4,1:3)]

  ## 5. Write dataset to dataset dir
    write.dataset(freqTable,"../R/dataset/r-frequencies.csv")


    diff <- Sys.time() - start_time # calculate difference
    print(diff) # print in nice format

然而,由于我使用的是大数据集(16,500个文件,所有文件都有多行),因此它需要很长时间。在我的系统上,整个过程大约需要一个小时四分之一。我心里想,那里应该有一种可以更快地完成这项工作的语言,所以我去教自己一些Python,并在这里问了很多问题。

最后,我提出了以下脚本(paste)。

import os, pandas as pd, numpy as np, regex as re

from glob import glob
from datetime import datetime
from html import unescape

start_time = datetime.now()

# Create empty dataframe with correct column names
columnNames = ["fileName", "component", "precedingWord", "node", "leftContext", "sentence" ]
df = pd.DataFrame(data=np.zeros((0,len(columnNames))), columns=columnNames)

# Create correct path where to fetch files
subdir = "rawdata"
path = os.path.abspath(os.path.join(os.getcwd(), os.pardir, subdir))

# "Cache" regex
# See http://stackoverflow.com/q/452104/1150683
p_filename = re.compile(r"[./\\]")

p_sentence = re.compile(r"<sentence>(.*?)</sentence>")
p_typography = re.compile(r" (?:(?=[.,:;?!) ])|(?<=\( ))")
p_non_graph = re.compile(r"[^\x21-\x7E\s]")
p_quote = re.compile(r"\"")
p_ellipsis = re.compile(r"\.{3}(?=[^ ])")

p_last_word = re.compile(r"^.*\b(?<!-)(\w+(?:-\w+)*)[^\w]*$", re.U)

# Loop files in folder
for file in glob(path+"\\*.lst"):
    with open(file, encoding="utf-8") as f:
        [n, c] = p_filename.split(file.lower())[-3:-1]
        fn = ".".join([n, c])
        for line in f:
            s = p_sentence.search(unescape(line)).group(1)
            s = s.lower()
            s = p_typography.sub("", s)
            s = p_non_graph.sub("", s)
            s = p_quote.sub("'", s)
            s = p_ellipsis.sub("... ", s)

            if n in re.split(r"[ :?.,]", s):
                lc = re.split(r"(^| )" + n + "( |[!\",.:;?})\]])", s)[0]

                pw = p_last_word.sub("\\1", lc)

                df = df.append([dict(fileName=fn, component=c, 
                                   precedingWord=pw, node=n, 
                                   leftContext=lc, sentence=s)])
            continue

# Reset indices
df.reset_index(drop=True, inplace=True)

# Export dataset
df.to_csv("dataset/py-dataset.csv", sep="\t", encoding="utf-8")

# Let's make a frequency list
# Create new dataframe

# Define neuter and non_neuter
neuter = ["het"]
non_neuter = ["de"]

# Create crosstab
df.loc[df.precedingWord.isin(neuter), "gender"] = "neuter"
df.loc[df.precedingWord.isin(non_neuter), "gender"] = "non_neuter"
df.loc[df.precedingWord.isin(neuter + non_neuter)==0, "gender"] = "rest"

freqDf = pd.crosstab(df.node, df.gender)

freqDf.to_csv("dataset/py-frequencies.csv", sep="\t", encoding="utf-8")

# How long has the script been running?
time_difference = datetime.now() - start_time
print("Time difference of", time_difference)

在确保两个脚本的输出相同后,我想我会把它们放到测试中。

我在Windows 10 64 bit上运行,配备四核处理器和8 GB Ram。对于R,我使用的是RGui 64位3.2.2,Python在版本 3.4.3 (Anaconda)上运行,并在Spyder中执行。请注意,我在32位运行Python,因为我希望将来使用nltk module,并且不鼓励用户使用64位。

我发现R在大约55分钟内完成。但是Python已经连续运行了两个小时,我可以在变量资源管理器中看到它只在business.wr-p-p-g.lst(文件按字母顺序排序)。 这是waaaaayyyy慢!

所以我做的是做一个测试用例,看看两个脚本如何用更小的数据集执行。我拿了大约100个文件(而不是16,500个)并运行了脚本。再一次,R更快。 R在大约2秒内完成,Python在17秒内完成!

看到Python的目标是让一切顺利,我感到困惑。我读Python很快(而且R很慢),所以我哪里出错了?问题是什么? Python在阅读文件和行或执行正则表达式时是否较慢?或者R是否更适合处理数据帧而不能被熊猫打败? 是我的代码,只是非常优化,Python应该确实是胜利者吗?

我的问题是:在这种情况下,为什么Python比R慢,而且 - 如果可能的话 - 我们如何改进Python以发光?

每个愿意尝试使用任何一个脚本的人都可以下载我使用的测试数据here。下载文件时请与我联系。

1 个答案:

答案 0 :(得分:3)

你做的最可怕的低效事情是在循环中调用DataFrame.append方法,即

df = pandas.DataFrame(...)
for file in files:
    ...
    for line in file:
        ...
        df = df.append(...)

NumPy数据结构在设计时考虑了函数式编程,因此这种操作并不意味着以迭代命令式方式使用,因为调用不会就地更改数据框,但会创建一个新的数据框,导致时间和内存复杂性的巨大增加。如果您确实想要使用数据框,请在list中累积行并将其传递给DataFrame构造函数,例如

pre_df = []
for file in files:
    ...
    for line in file:
        ...
        pre_df.append(processed_line)

df = pandas.DataFrame(pre_df, ...)

这是最简单的方法,因为它会对您拥有的代码进行最小的更改。但更好(和计算上更漂亮)的方法是弄清楚如何懒洋洋地生成数据集。这可以通过将工作流分成离散函数(在函数式编程风格的意义上)并使用惰性生成器表达式和/或imapifilter高阶函数来组合它们来轻松实现。然后,您可以使用生成的生成器来构建数据框,例如

df = pandas.DataFrame.from_records(processed_lines_generator, columns=column_names, ...)

至于在一次运行中阅读多个文件,您可能需要阅读this

P.S。

如果您遇到性能问题,则应在尝试优化代码之前对其进行分析。