我知道这个问题已被提出了一百万次,但是,我无法理解为什么这个代码会抛出错误,我已经找到了导致错误的罪魁祸首FOR循环,但是,我没有看到任何错误它
我收到错误 - “列出索引超出界限(4)”
function TNetwork.FeedForward(InputVals : array of Real) : Real;
var
I : Integer;
begin
for I := 0 to Length(InputVals)-1 do
begin
Input[I].Input(InputVals[I]);
end;
for I := 0 to Length(Hidden)-1 do
begin
Hidden[I].CalcOutput;
end;
Output.CalcOutput;
Result := Output.GetOutput;
end;
第二个For循环发生错误,这里是我设置隐藏数组大小的地方。
constructor TNetwork.Create(Inputs, HiddenTotal : Integer);
var
C : TConnection;
I, J : Integer;
begin
LEARNING_CONSTANT := 0.5;
SetLength(Input,Inputs+1);
SetLength(Hidden,HiddenTotal+1);
所以,正如我所看到的,循环只执行了三次,那么它为什么要尝试索引第四个空格呢?没关系为什么,更重要的是,怎么样?
如果有人可以对事业有所了解,并且有可能解决问题,我将永远感激不尽
为了完成,这是完整的单位..
unit NeuralNetwork_u;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ComCtrls, Math;
type
TConnection = Class;
TNeuron = class(TObject)
protected
Output : Real;
Connections : TList;
isBias : Boolean;
public
Constructor Create; overload;
Constructor Create(BiasValue : Integer); overload;
procedure CalcOutput;
procedure AddConnection( Con : TConnection );
function GetOutput : Real;
Function F( X : Real ) : Real;
end;
TConnection = class
private
nFrom, nTo : TNeuron;
Weight : Real;
public
constructor Create(a , b : TNeuron) ; overload;
constructor Create(a, b : TNeuron ; W : Real) ; overload;
function GetFrom : TNeuron;
function GetTo : TNeuron;
function GetWeight : Real;
procedure AdjustWeight(DeltaWeight : Real);
end;
type TInputNeuron = class(TNeuron)
public
procedure Input (D : Real);
end;
type THiddenNeuron = class(TNeuron)
private
public
end;
type TOutputNeuron = Class(TNeuron)
private
public
end;
type TNetwork = class(TObject)
private
LEARNING_CONSTANT : Real;
public
Input : array of TInputNeuron;
Hidden : array of THiddenNeuron;
Output : TOutputNeuron;
constructor Create(Inputs,HiddenTotal : Integer);
function FeedForward(InputVals : array of Real) : Real;
function Train(Inputs : array of Real ; Answer : Real) : Real;
function TrainOnFile(Epochs : Integer ; TrainingFile : String) : Real;
end;
implementation
constructor TNeuron.Create;
begin
Output := 0;
Connections := TList.Create;
isBias := False;
end;
Constructor TNeuron.Create(BiasValue : Integer);
begin
Output := BiasValue;
Connections := TList.Create;
isBias := True;
end;
procedure TNeuron.CalcOutput;
var
Sum : Real;
Bias : Real;
C : TConnection ;
NeuronFrom, NeuronTo : TNeuron;
I : Integer;
begin
if isBias then
else
begin
Sum := 0;
Bias := 0;
for I := 0 to Connections.Count do
begin
C := Connections[I];
NeuronFrom := C.GetFrom;
NeuronTo := C.GetTo;
if NeuronTo = self then
begin
if NeuronFrom.isBias then
begin
Bias := NeuronFrom.GetOutput * C.GetWeight;
end
else
begin
Sum := Sum + NeuronFrom.GetOutput * C.GetWeight;
end;
end;
end;
Output := F(Bias + Sum);
end;
end;
procedure TNeuron.AddConnection(Con : TConnection);
begin
Connections.Add(Con) ;
end;
function TNeuron.GetOutput : Real;
begin
Result := Output;
end;
function TNeuron.F( X : Real ) : Real;
begin
Result := 1.0 /(1.0 + Exp(-X));
end;
procedure TInputNeuron.Input ( D : Real);
begin
Output := D;
end;
constructor TConnection.Create(a, b : TNeuron);
begin
nFrom := a;
nTo := b;
Weight := Random * 2 - 1;
end;
constructor TConnection.Create(a, b : TNeuron ; w : Real);
begin
nFrom := a;
nTo := b;
Weight := w;
end;
function TConnection.GetFrom : TNeuron;
begin
Result := nFrom;
end;
function TConnection.GetTo : TNeuron;
begin
Result := nTo;
end;
function TConnection.GetWeight;
begin
Result := Weight;
end;
procedure Tconnection.AdjustWeight(DeltaWeight : Real);
begin
Weight := Weight + DeltaWeight;
end;
constructor TNetwork.Create(Inputs, HiddenTotal : Integer);
var
C : TConnection;
I, J : Integer;
begin
LEARNING_CONSTANT := 0.5;
SetLength(Input,Inputs+1);
SetLength(Hidden,HiddenTotal+1);
for I := 0 to Length(Input)-1 do
begin
Input[I] := TInputNeuron.Create;
end;
for I := 0 to Length(Hidden)-1 do
begin
Hidden[I] := THiddenNeuron.Create;
end;
Input[Length(Input)-1] := TInputNeuron.Create(1);
Hidden[Length(Hidden)-1] := THiddenNeuron.Create(1);
Output := TOutputNeuron.Create;
for I := 0 to Length(Input)-1 do
begin
for J := 0 to Length(Hidden)-1 do
begin
C := TConnection.Create(Input[I],Hidden[J]);
Input[I].AddConnection(C);
Hidden[J].AddConnection(C);
end;
end;
for I := 0 to Length(Hidden)-1 do
begin
C := TConnection.Create(Hidden[I],Output);
Hidden[I].AddConnection(C);
Output.AddConnection(C);
end;
end;
function TNetwork.FeedForward(InputVals : array of Real) : Real;
var
I : Integer;
begin
for I := 0 to Length(InputVals)-1 do
begin
Input[I].Input(InputVals[I]);
end;
for I := 0 to Length(Hidden)-1 do
begin
Hidden[I].CalcOutput;
end;
Output.CalcOutput;
Result := Output.GetOutput;
end;
function TNetwork.Train(Inputs : array of Real ; Answer : Real) : Real;
var
rResult : Real;
deltaOutput, rOutput, deltaWeight, Sum, deltaHidden : Real;
Connections : TList;
C : TConnection;
Neuron : TNeuron;
I, J : Integer;
begin
rResult := FeedForward(Inputs);
deltaOutput := rResult * (1 - rResult) * (Answer - rResult);
Connections := Output.Connections;
for I := 0 to Connections.Count do
begin
C := Connections[I];
Neuron := C.GetFrom;
rOutput := Neuron.Output;
deltaWeight := rOutput * deltaOutput;
C.AdjustWeight(LEARNING_CONSTANT * deltaWeight);
end;
for I := 0 to Length(Hidden) do
begin
Connections := Hidden[I].Connections;
Sum := 0;
for J := 0 to Connections.Count do
begin
C := Connections[J];
if c.GetFrom = Hidden[I] then
begin
Sum := Sum + (C.GetWeight * deltaOutput);
end;
end;
for J := 0 to Connections.Count do
begin
C := Connections[I];
if C.GetTo = Hidden[I] then
begin
rOutput := Hidden[I].GetOutput;
deltaHidden := rOutput * ( 1 - rOutput);
deltaHidden := deltaHidden * Sum;
Neuron := C.GetFrom;
deltaWeight := Neuron.GetOutput * deltaHidden;
C.AdjustWeight(LEARNING_CONSTANT * deltaWeight);
end;
end;
end;
Result := rResult;
end;
function TNetwork.TrainOnFile(Epochs : Integer ; TrainingFile : string) : Real;
var
FileT : TStringList;
Inputss : array of Real;
Outputss : Real;
I, C : Integer;
sTemp : String;
NumInputs, NumOutputs : Integer;
begin
// Load File
FileT := TStringList.Create;
try
FileT.LoadFromFile(TrainingFile);
except
raise Exception.Create('Training File Does Not Exist');
end;
for I := 0 to FileT.Count-1 do
begin
sTemp := FileT[I];
if I = 0 then
begin
// get Configurators
Delete(sTemp,1,Pos(' ',stemp)); // no Longer need training Set count
NumInputs := StrToInt(Copy(sTemp,1,Pos(' ',sTemp)-1));
Delete(sTemp,1,Pos(' ',sTemp));
NumOutputs := StrToInt(Copy(sTemp,1,Length(sTemp)));
SetLength(Inputss,NumInputs+1);
end
else
begin
for C := 0 to NumInputs-1 do
begin
Inputss[C] := StrToFloat(Copy(sTemp,1,Pos(' ',sTemp)-1));
Delete(sTemp,1,Pos(' ',sTemp));
end;
Outputss := StrToFloat(Copy(sTemp,1,Length(sTemp)));
Train(Inputss,Outputss);
end;
end;
end;
end.
答案 0 :(得分:3)
for I := 0 to Connections.Count do
你在这里运行列表的末尾。有效索引为0
到Connections.Count-1
,包括TList
。你太过分了。
你反复犯这个错误。当然,你需要在任何地方修复它。
当您执行TStringList
或success
等集合类的越界访问时,通常会看到列表索引超出范围错误。
另一方面,除非启用了范围检查,否则数组边界错误是不可预测的。如果您这样做,并且您应该这样做,那么您会收到此类事件的运行时错误。您需要启用范围检查。
答案 1 :(得分:2)
对于@ David的回答,这是一个小补充,而不是替代。
特别是当涉及动态数组时,执行类似
的操作 for I := 0 to Length(Hidden)-1 do
begin
Hidden[I].CalcOutput;
end;
是一种过早优化,因为如果
发生异常 Hidden[I].CalcOutput;
行,对于没有完全使用Delphi调试器的人来说,如何使用它以及异常消息实际指的是什么(这并不总是显而易见的)来判断是否可能并不容易在Hidden []数组的索引或在其Ith项上调用CalcOutput时会出现异常。因此,至少出于调试目的,做这样的事情会很有用:
var
H : THiddenNeuron;
[...]
for I := 0 to Length(Hidden) -1 do
begin
H := Hidden[I];
H.CalcOutput;
end;
然后很容易区分原始代码可能出错的两个可能位置。