我需要以各种方式处理地球坐标。 C / C ++中没有直接执行此操作的功能 提到以下问题:
从第一个和movable type scripts website开始,我发现以下是公式:
查找2个坐标之间的方位(角度)
x = cos(lat1Rad)*sin(lat2Rad) - sin(lat1Rad)*cos(lat2Rad)*cos(lon2Rad-lon1Rad);
y = sin(lon2Rad-lon1Rad) * cos(lat2Rad);
bearing = atan2(y, x); // In radians;
// Convert to degrees and for -ve add 360
查找2个坐标之间的距离(米)
PI = 3.14159265358979323846, earthDiameterMeters = 2*6371*1000;
x = sin((lat2Rad-lat1Rad) / 2);
y = sin((lon2Rad-lon1Rad) / 2);
meters = earthDiameterMeters * asin(sqrt(x*x + y*y*cos(lat1Rad)*cos(lat2Rad)));
从坐标+距离+角度
查找坐标meters *= 2 / earthDiameterMeters;
lat2Rad = asin(sin(lat1Rad)*cos(meters) + cos(lat1Rad)*sin(meters)*cos(bearing));
lon2Rad = lon1Rad + atan2(sin(bearing)*sin(meters)*cos(lat1Rad),
cos(meters) - sin(lat1Rad)*sin(lat2Rad));
伪代码下面应该相互验证上述3个方程:
struct Coordinate { double lat, lon; } c1, c2;
auto degree = FindBearing(c1, c2);
auto meters = FindDistance(c1, c2);
auto cX = FindCoordiante(c1, degree, meters);
现在实际上答案是几乎附近但不正确。即cX不等于c2!
经度值总是存在0.0005
差异。
e.g。
c1 = (12.968460,77.641308)
c2 = (12.967862,77.653130)
angle = 92.97 ^^^
distance = 1282.74
cX = (12.967862,77.653613)
^^^
我对数学'Havesine Forumla知之甚少。但我所知道的是,从the website fcc.gov开始,答案总是正确的。
我做错了什么?
虽然语法是用C ++编写的,但所有数学函数都来自C,并且在C中也很容易移植(因此标记为两者)
#include<iostream>
#include<iomanip>
#include<cmath>
// Source: http://www.movable-type.co.uk/scripts/latlong.html
static const double PI = 3.14159265358979323846, earthDiameterMeters = 6371.0 * 2 * 1000;
double degreeToRadian (const double degree) { return (degree * PI / 180); };
double radianToDegree (const double radian) { return (radian * 180 / PI); };
double CoordinatesToAngle (double latitude1,
const double longitude1,
double latitude2,
const double longitude2)
{
const auto longitudeDifference = degreeToRadian(longitude2 - longitude1);
latitude1 = degreeToRadian(latitude1);
latitude2 = degreeToRadian(latitude2);
using namespace std;
const auto x = (cos(latitude1) * sin(latitude2)) -
(sin(latitude1) * cos(latitude2) * cos(longitudeDifference));
const auto y = sin(longitudeDifference) * cos(latitude2);
const auto degree = radianToDegree(atan2(y, x));
return (degree >= 0)? degree : (degree + 360);
}
double CoordinatesToMeters (double latitude1,
double longitude1,
double latitude2,
double longitude2)
{
latitude1 = degreeToRadian(latitude1);
longitude1 = degreeToRadian(longitude1);
latitude2 = degreeToRadian(latitude2);
longitude2 = degreeToRadian(longitude2);
using namespace std;
auto x = sin((latitude2 - latitude1) / 2), y = sin((longitude2 - longitude1) / 2);
#if 1
return earthDiameterMeters * asin(sqrt((x * x) + (cos(latitude1) * cos(latitude2) * y * y)));
#else
auto value = (x * x) + (cos(latitude1) * cos(latitude2) * y * y);
return earthDiameterMeters * atan2(sqrt(value), sqrt(1 - value));
#endif
}
std::pair<double,double> CoordinateToCoordinate (double latitude,
double longitude,
double angle,
double meters)
{
latitude = degreeToRadian(latitude);
longitude = degreeToRadian(longitude);
angle = degreeToRadian(angle);
meters *= 2 / earthDiameterMeters;
using namespace std;
pair<double,double> coordinate;
coordinate.first = radianToDegree(asin((sin(latitude) * cos(meters))
+ (cos(latitude) * sin(meters) * cos(angle))));
coordinate.second = radianToDegree(longitude
+ atan2((sin(angle) * sin(meters) * cos(latitude)),
cos(meters) - (sin(latitude) * sin(coordinate.first))));
return coordinate;
}
int main ()
{
using namespace std;
const auto latitude1 = 12.968460, longitude1 = 77.641308,
latitude2 = 12.967862, longitude2 = 77.653130;
cout << std::setprecision(10);
cout << "(" << latitude1 << "," << longitude1 << ") --- "
"(" << latitude2 << "," << longitude2 << ")\n";
auto angle = CoordinatesToAngle(latitude1, longitude1, latitude2, longitude2);
cout << "Angle = " << angle << endl;
auto meters = CoordinatesToMeters(latitude1, longitude1, latitude2, longitude2);
cout << "Meters = " << meters << endl;
auto coordinate = CoordinateToCoordinate(latitude1, longitude1, angle, meters);
cout << "Destination = (" << coordinate.first << "," << coordinate.second << ")\n";
}
答案 0 :(得分:2)
在CoordinateToCoordinate
中,您使用的sin(coordinate.first)
已经是度数。使用sin(degreeToRadian(coordinate.first))
。
或者更清洁:
... CoordinateToCoordinate (...)
{
...
coordinate.first = asin((sin(latitude) * cos(meters))
+ (cos(latitude) * sin(meters) * cos(angle)));
coordinate.second = longitude + atan2((sin(angle) * sin(meters) * cos(latitude)),
cos(meters) - (sin(latitude) * sin(coordinate.first)));
coordinate.first = radianToDegree(coordinate.first);
coordinate.second = radianToDegree(coordinate.second);
return coordinate;
}
这解决了这个问题。 Live Demo
答案 1 :(得分:0)
部分答案
如果角度为92.97°
,则转换为弧度,对sin/cos/tan
的调用将有效地将角度更改为2.97°
。由于周期缩短发生在度到弧度转换后以及在trig函数调用中发生周期减少,因此单独此步骤会丢失6位精度。
可以增强具有大角度度的三角函数的精度。使用幸运的方面,正好 360.0度的圆圈。在使用弧度参数调用trig函数之前,执行“模45°”,可能使用remquo(angle, 45, &octant)
,然后转换为弧度。
示例sind()
您对77.641308和77.653130的回答在6600(约13位精度)中大约相差1个部分。这个答案可能无法完全解释,但应该有所帮助。
(如果float
的某些用法出现在某处,则应该double
。)