Tkinter GUI经常冻结

时间:2015-08-18 14:34:25

标签: python-2.7 user-interface tkinter

最近我创建了一个GUI,它获取了一个CSV文件,并在所选位置绘制了所选变量的平均值和标准值。

几天前,GUI工作得非常好。一旦我加载CSV文件或选择了位置变量后,它就开始崩溃(没有响应)。有时它绘制第一组数据,然后它停止工作(我应该能够重新选择数据并重新绘制)。

然而,它经常起作用并绘制平均值和标准。

我一遍又一遍地搜索谷歌,但找不到任何问题的答案。

如果有人能提供帮助并给出解决方案,我将不胜感激。

import matplotlib
from Tkinter import *
import csv
matplotlib.use("TkAgg")
from matplotlib import pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg,    NavigationToolbar2TkAgg
from matplotlib.figure import Figure
import numpy as np
import pylab as pl
from matplotlib import style
style.use('ggplot')
from tkFileDialog import askopenfilename
import inspect, os


root=Tk()
root.geometry("%dx%d+%d+%d" % (1500, 900, 500, 150))
root.title("Spectroscopy Library 1.0")
root.configure(bg='white')
#root.iconbitmap(iconpath)   # setting the icon 

T = Text(root, height=1, width=40,bg='white', fg='gray13',font=("Helvetica",24))
T.pack()
T.insert(END, "Tumor Average Spectra, Short Echo Time at 1.5 T")

filename = askopenfilename() 
Label(root, text="Location:",bg='white').grid(row=3, sticky=W)
var1 = IntVar()
Checkbutton(root, text="Posterior Fossa", variable=var1,bg='white').grid(row=4, sticky=W)
var2 = IntVar()
Checkbutton(root, text="Supratentorial", variable=var2,bg='white').grid(row=5, sticky=W)


def tumor_select():


    #----------------- calculating the file length---------------------------------
    csv_file_size = open(filename, 'rU')
    dataforsize = csv.reader(csv_file_size, delimiter=',')
    row_count = pl.sum(1 for row2 in dataforsize)

    #------------------defining matrixes-------------------------------------------

    csv_file = open(filename, 'rU')
    #    csv_file = open("/Users/Emsku/Documents/Python/modeldata5.csv", "rU")
    data = csv.reader(csv_file, delimiter=',')

    tumor = ["" for x in range(row_count)]  # defining an empty string
    region = ["" for y in range(row_count)]  #defining an empty string
    fit = np.zeros((row_count, 456))  #defining a int array

    #     data into arrays
    f = 0
    for row in data:
        tumor[f] = row[0]
        region[f] = row[1]
        fit[f] = row[2:]
        f += 1

    #---------------- devining data into region and tumor types -------------------

    atrt = [];atrtfit =[];atrtloc =[]
    gbm = [];gbmfit = [];gbmloc = []
    gng = [];gngfit = [];gngloc = []
    dast = [];dastfit = [];dastloc = []
    aast = [];aastfit = [];aastloc = []
    carn = [];carnfit = [];carnloc = []
    cpp = [];cppfit = [];cpploc = []
    cnspri = [];cnsprifit = [];cnspriloc = []
    dnt = [];dntfit = [];dntloc = []
    acpp = [];acppfit = [];acpploc = []
    past = [];pastfit = [];pastloc = []
    pin = [];pinfit = [];pinloc = []
    cpc = [];cpcfit = [];cpcloc = []
    germ = [];germfit = [];germloc = []
    epen = [];epenfit = [];epenloc = []
    anepen = [];anepenfit = [];anepenloc = []
    med = [];medfit = [];medloc = []
    dnmed = [];dnmedfit = [];dnmedloc = []
    lmed = [];lmedfit = [];lmedloc = []
    ast = [];astfit = [];astloc = []
    sepen = [];sepenfit = [];sepenloc = []
    glicer = [];glicerfit = [];glicerloc = []
    gcast = [];gcastfit = [];gcastloc = []
    swm = [];swmfit = [];swmloc = []
    pong = [];pongfit = [];pongloc = []
    ppm = []


    for index, type in enumerate(tumor):
        if type == 'Atypical Teratoid - Rhabdoid Tumour':
            atrt.append(index)
            atrtfit.append(fit[index,])
            atrtloc.append(region[index])
        if type == 'Glioblastoma':
            gbm.append(index)
            gbmfit.append(fit[index,])
            gbmloc.append(region[index])
        if type == 'ganglioglioma':
            gng.append(index)
            gngfit.append(fit[index,])
            gngloc.append(region[index])
        if type == 'diffuse_astrocytoma':
            dast.append(index)
            dastfit.append(fit[index,])
            dastloc.append(region[index])


       # part of the code (same as above for other tumor types) not included here


    ppm = fit[0,]

     # ATRT tumor
    atrt_pf=[];atrt_sp=[]
    for index, type in enumerate(atrtloc):
        if type == 'posterior fossa':
            atrt_pf.append(atrtfit[index])
        elif type == 'Supratentorial':
            atrt_sp.append(atrtfit[index])

    if len(atrt_pf)>1:
        atrtave_pf = np.mean(atrt_pf, axis=0);atrtsd_pf = np.std(atrt_pf, axis=0)
    elif len(atrt_pf)==1:
        atrtave_pf = np.mean(atrt_pf, axis=0) ;atrtsd_pf = np.zeros((456, 1))

    if len(atrt_sp)>1:
        atrtave_sp = np.mean(atrt_sp, axis=0);atrtsd_sp = np.std(atrt_sp, axis=0)
    elif len(atrt_sp)==1:
        atrtave_sp = np.mean(atrt_sp, axis=0); atrtsd_sp = np.zeros((456, 1))

    # Glioblastoma

    gbm_pf=[]; gbm_sp=[]
    for index, type in enumerate(gbmloc):
        if type == 'posterior fossa':
            gbm_pf.append(gbmfit[index])
        elif type == 'Supratentorial':
            gbm_sp.append(gbmfit[index])

    if len(gbm_pf)>1:
        gbmave_pf = np.mean(gbm_pf, axis=0);gbmsd_pf = np.std(gbm_pf, axis=0)
    elif len(gbm_pf)==1:
        gbmave_pf = np.mean(gbm_pf, axis=0) ;gbmsd_pf = np.zeros((456, 1))

    if len(gbm_sp)>1:
        gbmave_sp = np.mean(gbm_sp, axis=0);gbmsd_sp = np.std(gbm_sp, axis=0)
    elif len(gbm_sp)==1:
        gbmave_sp = np.mean(gbm_sp, axis=0); gbmsd_sp = np.zeros((456, 1))

    # Ganglioglioma

    gng_pf=[]; gng_sp=[]
    for index, type in enumerate(gngloc):
        if type == 'posterior fossa':
            gng_pf.append(gngfit[index])
        elif type == 'Supratentorial':
            gng_sp.append(gngfit[index])

    if len(gng_pf)>1:
        gngave_pf = np.mean(gng_pf, axis=0);gngsd_pf = np.std(gng_pf, axis=0)
    elif len(gng_pf)==1:
        gngave_pf = np.mean(gng_pf, axis=0) ;gngsd_pf = np.zeros((456, 1))

    if len(gng_sp)>1:
        gngave_sp = np.mean(gng_sp, axis=0);gngsd_sp = np.std(gng_sp, axis=0)
    elif len(gng_sp)==1:
        gngave_sp = np.mean(gng_sp, axis=0); gngsd_sp = np.zeros((456, 1))


    dast_pf=[]; dast_sp=[]
    for index, type in enumerate(dastloc):
        if type == 'posterior fossa':
            dast_pf.append(dastfit[index])
        elif type == 'Supratentorial':
            dast_sp.append(dastfit[index])



    if len(dast_pf)>1:
        dastave_pf = np.mean(dast_pf, axis=0);dastsd_pf = np.std(dast_pf, axis=0)
    elif len(dast_pf)==1:
        dastave_pf = np.mean(dast_pf, axis=0) ;dastsd_pf = np.zeros((456, 1))

    if len(dast_sp)>1:
        dastave_sp = np.mean(dast_sp, axis=0);dastsd_sp = np.std(dast_sp, axis=0)
    elif len(dast_sp)==1:
        dastave_sp = np.mean(dast_sp, axis=0); dastsd_sp = np.zeros((456, 1))



       # part of the code (same as above for other tumor types) not included here


var3 = StringVar(root)
# initial value
var3.set(' Select Tumor Type ')
choices = ['Atypical Teratoid Rhabdoid Tumour', 'Anaplastic astrocytoma','Anaplastic ependymoma','Atypical Choroid Plexus Papilloma', 'Craniopharyngioma adamantinomatous', 'Choroid Plexus Carcinoma', 'Choroid plexus papilloma', 'CNS_primitive_neuroectodermal_tumour_94733', 'Diffuse astrocytoma', 'Dysembryoplastic Neuroepithelial Tumour','Desmoplastic-Nodular Medulloblastoma','Ependymoma ', 'Glioblastoma', 'Gliomatosis cerberi', 'Ganglioglioma', 'Germinoma','Large Cell Medulloblastoma','Medulloblastoma ', 'Pilomyxoid astrocytoma', 'Pinoblastoma', 'Pontine glioma', 'Pilocytic astrocytoma ', 'Schwannoma', 'Subependymoma', 'Unbiopsied Subependymal Giant Cell Astrocytoma']
option =OptionMenu(root, var3, *choices).grid(row=10, sticky=W)
button = Button(root, text="       Plot average Spectra   ", command=tumor_select,bg="alice blue").grid(row=12, sticky=W)
#button.pack(side='left', padx=20, pady=10)
close_button = Button(root, text="                   Quit                   ", command=root.destroy).grid(row=16, sticky=W)


root.mainloop()

1 个答案:

答案 0 :(得分:0)

检查输入文件的大小,因为内存不足。你有2个列表包含输入文件,还有3个列表只是输入文件拆分,然后是一些相同数据的numpy数组。此代码将csv文件转换为磁盘上的SQL数据库,因此文件/内存大小不是问题(为什么使用SQL数据库会更容易)。然后一个常见的函数模拟绘图,但打印相反,所以你会知道a)它是否按你想要的方式工作,b)如果程序仍然挂起,那么这段代码就不是问题了。请注意,我不知道输入数据是什么样的,因此您必须在必要时进行调整。一些教程http://zetcode.com/db/sqlitepythontutorial/http://freshmeat.net/articles/sqlite-tutorial

"""obviously this is a stripped down version in the interest
   of time spent
"""

import os
import random
import sqlite3 as sqlite

def tumor_select(cur):
    """ select the specified tumors and get and print
        for each of the regions that you want
    """
    tumor_list=['Atypical Teratoid - Rhabdoid Tumour','Glioblastoma',
                  'ganglioglioma', 'diffuse_astrocytoma']
    region_list=['posterior fossa', 'Supratentorial']

    print "\n========== tumor function================="
    for tumor in tumor_list:
        ## append to list to be used in calcs instead of print
        for region in region_list:
            print "-"*70
            print "%7s  %-38s %-15s %5s" % ("rec-num", "tumor",
                  "region", "fit")
            ## using the dictionary look up method which has advantages IMHO
            cur.execute("select * from test_dbf where t_tumor=:d_tumor and t_region=:d_region",
                       {"d_tumor": tumor, "d_region": region})
            found=cur.fetchall()
            for row in found:
                print "%7d  %-38s %-15s %5s" % (row[0], row[1], row[2], row[3])

def open_file():
    """ creates a new SQL file with the fields below and populates
        it with the csv data each time the program is run
    """
    f_name="./test_1.SQL"
    if os.path.isfile(f_name):
        os.remove(f_name)
    con = sqlite.connect(f_name)
    cur = con.cursor()

    cur.execute('''CREATE TABLE test_dbf(t_rec_num int, t_tumor varchar, t_region varchar, t_fit varchar)''')

    ## add each rec to the SQL DB
    with open("./test_1.csv", "r") as fp_in:
        for rec_num, rec in enumerate(fp_in):
            fields = rec.strip().split(",")
            cur.execute('INSERT INTO test_dbf values (?,?,?,?)', tuple([rec_num]+fields))
        con.commit()
    return cur

def print_all_recs(cur):
    cur.execute("select * from test_dbf")
    recs_list=cur.fetchall()
    for rec in recs_list:
        print rec

## output some test data
tumor_list=['Atypical Teratoid - Rhabdoid Tumour','Glioblastoma',
                  'ganglioglioma', 'diffuse_astrocytoma',
                  'something else']
region_list=['posterior fossa', 'Supratentorial',
                  'something else']

with open("./test_1.csv", "w") as fp_out:
    for ctr in range(100):
        ## don't knoe what "fit" is so just use a number
        fp_out.write("%s,%s,%s%s\n" % (random.choice(tumor_list),
                     random.choice(region_list), "fit ", ctr))

cur = open_file()
print_all_recs(cur)  ## while testing
tumor_select(cur)