我正在使用spark 1.4.1。当我试图播放随机森林模型时,它向我显示了这个错误:
Traceback (most recent call last):
File "/gpfs/haifa/home/d/a/davidbi/codeBook/Nice.py", line 358, in <module>
broadModel = sc.broadcast(model)
File "/opt/apache/spark-1.4.1-bin-hadoop2.4_doop/python/lib/pyspark.zip/pyspark/context.py", line 698, in broadcast
File "/opt/apache/spark-1.4.1-bin-hadoop2.4_doop/python/lib/pyspark.zip/pyspark/broadcast.py", line 70, in __init__
File "/opt/apache/spark-1.4.1-bin-hadoop2.4_doop/python/lib/pyspark.zip/pyspark/broadcast.py", line 78, in dump
File "/opt/apache/spark-1.4.1-bin-hadoop2.4_doop/python/lib/pyspark.zip/pyspark/context.py", line 252, in __getnewargs__
Exception: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transforamtion. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.
我正在尝试执行的代码示例:
sc = SparkContext(appName= "Something")
model = RandomForest.trainRegressor(sc.parallelize(data), categoricalFeaturesInfo=categorical, numTrees=100, featureSubsetStrategy="auto", impurity='variance', maxDepth=4)
broadModel= sc.broadcast(model)
如果有人可以帮助我,我会非常感激! 非常感谢!
答案 0 :(得分:1)
简短回答是使用PySpark是不可能的。预测所需的callJavaFunc
使用SparkContext
因此错误。不过可以使用Scala API做这样的事情。
在Python中,您可以使用与单个模型相同的方法,这意味着model.predict
后跟zip
。
models = [mode1, mode2, mode3]
predictions = [
model.predict(testData.map(lambda x: x.features)) for model in models]
def flatten(x):
if isinstance(x[0], tuple):
return tuple(list(x[0]) + [x[1]])
else:
return x
(testData
.map(lambda lp: lp.label)
.zip(reduce(lambda p1, p2: p1.zip(p2).map(flatten), predictions)))
如果想了解有关问题根源的更多信息,请查看:How to use Java/Scala function from an action or a transformation?