使用quantstrat进行多时间帧策略的正确方法是什么?

时间:2015-08-18 05:12:02

标签: r quantmod quantstrat

以下是我正在使用quantstrat进行多时间帧策略的示例。这是做多时间框架策略的正确方法还是我做错了?我没有遇到任何其他在quantstrat演示或谷歌搜索中做多时间帧的例子。

为了保持策略部分简单(这不是某人会交易的策略)并将重点放在多时间框架方面,我将演示一个使用tick数据的简单策略 5分钟OHLC数据。策略逻辑是当滴答数据超过5分钟数据的30周期SMA时买入,并在滴答数据低于同一个SMA时关闭仓位。

例如:如果策略是平的,则时间是13:02,并且之前观察到的5分钟数据的30周期SMA是90.55(对于12:55-结束13:00的时段),并且蜱数据从低于90.55到高于它(90.56)交叉,这是一个买入,当蜱数据再次低于它时,它退出该位置。

为了达到这个目的,我需要将tick数据和5分钟,30周期的SMA同时放入同一个对象中进行量子处理。我得到了5分钟的OHLC xts并计算了它的30周期SMA。然后我将它合并到刻度数据xts对象中,这将给我一个包含所有刻度数据的对象,然后每隔5分钟,我将获得最后一次观察到的5分钟,30周期SMA的行。

如果在13:00有30个周期的SMA值,则为5分12:55-13:00。由于下次更新SMA是5分钟后,我需要填充行直到观察到下一个值(在13:05),依此类推。

这是tick数据的head(我的刻度数据不包括毫秒,但我使用make.index.unique(clemtick)使行唯一:

head(clemtick)
                    Price Volume
2013-01-15 09:00:00 93.90      1
2013-01-15 09:00:00 93.89      1
2013-01-15 09:00:00 93.89      1
2013-01-15 09:00:00 93.88      2
2013-01-15 09:00:00 93.89      1
2013-01-15 09:00:00 93.89      2

这是1分钟数据的head(每分钟代表前一分钟的数据,例如时间戳09:01:00 ==数据从09:00:00 - 09:01:00):

head(clemin)
                     Open  High   Low Close Volume
2013-01-15 09:01:00 93.90 94.04 93.87 93.97   1631
2013-01-15 09:02:00 93.97 93.98 93.90 93.91    522
2013-01-15 09:03:00 93.91 93.97 93.90 93.96    248
2013-01-15 09:04:00 93.95 93.98 93.93 93.95    138
2013-01-15 09:05:00 93.95 93.96 93.91 93.92    143
2013-01-15 09:06:00 93.93 93.97 93.91 93.91    729

将1分钟数据转换为5分钟数据:

cle5min <- to.minutes5(clemin)
                    clemin.Open clemin.High clemin.Low clemin.Close clemin.Volume
2013-01-15 09:04:00       93.90       94.04      93.87        93.95          2539
2013-01-15 09:09:00       93.95       93.97      93.81        93.89          2356
2013-01-15 09:14:00       93.90       94.05      93.86        93.89          4050
2013-01-15 09:19:00       93.90       94.03      93.84        94.00          2351
2013-01-15 09:24:00       93.99       94.21      93.97        94.18          3261
2013-01-15 09:29:00       94.18       94.26      94.18        94.19          1361

您会注意到第一个OHLC是09:04:00,这是由于to.minutes5函数的工作方式,discussed in this thread。基本上第一次印章09:04:00 == OHLC 4分钟的数据从09:00:00 - 09:04:00。从09:04:00 - 09:09:00 09:09:00时间戳是下一个完整的5分钟。理想情况下,我希望每个时间戳都是5,10,15等,但我还没有弄清楚如何做到这一点。

将5分钟数据的30 SMA转换为刻度数据

clemtick$sma30 <- SMA(cle5min$clemin.Close, 30)

这将使用SMA创建一个新列。 SMA需要30个周期来计算第一个值 SMA只会出现每5分钟的时间戳(11:29:00,11:34:00,11:39 ......) 。它看起来像:

clemtick["2013-01-15 11:28:59::2013-01-15 11:29:00"]
                    Price Volume    SMA30
2013-01-15 11:28:59 93.87      1       NA
2013-01-15 11:28:59 93.87      1       NA
2013-01-15 11:28:59 93.88      1       NA
2013-01-15 11:29:00 93.87      1 93.92633
2013-01-15 11:29:00 93.87      1       NA
2013-01-15 11:29:00 93.88      1       NA
2013-01-15 11:29:00 93.88      1       NA

现在我需要用重复值填充SMA30列。 SMA30在11:29:00的值是从11:24:00到11:29:00的OHLC。此值的下一次更新将在11:34:00之前完成,因此我需要将行填充到下一个值,因为这是策略在逐行处理时将引用的内容。

clemtick  <- na.locf(clemtick)

现在,如果我再次查询该对象,

clemtick["2013-01-15 11:33:58::2013-01-15 11:34:01"]
                    Price Volume    SMA30
2013-01-15 11:33:58 93.84      1 93.92633
2013-01-15 11:34:00 93.84      1 93.92267
2013-01-15 11:34:00 93.85      1 93.92267
2013-01-15 11:34:01 93.84      1 93.92267

现在我们在这里有最终对象正在运行策略:

require(quantstrat)

options("getSymbols.warning4.0"=FALSE)
rm(list=ls(.blotter), envir=.blotter)
Sys.setenv(TZ="UTC")

symbols  <- "clemtick"
currency('USD')
stock(symbols, currency="USD", multiplier=1)

account.st  <- 0
strategy.st  <- portfolio.st <- account.st  <- "multi"
rm.strat(portfolio.st)
rm.strat(strategy.st)

initDate <- "1980-01-01"
tradeSize  <- 1000
initEq  <- tradeSize*length(symbols)
initPortf(portfolio.st, symbols=symbols, initDate=initDate, currency='USD')
initAcct(account.st, portfolios=portfolio.st,
         initDate=initDate, currency='USD', initEq=initEq)
initOrders(portfolio.st, initDate=initDate)

strategy(strategy.st, store=TRUE)

add.signal(strategy.st, name="sigCrossover",
  arguments=list(columns=c("Price", "sma30"), relationship="gt"),
  label="golong") 

add.signal(strategy.st, name="sigCrossover",
  arguments=list(columns=c("Price", "sma30"), relationship="lt"),
  label="exitlong")

#enter rule
add.rule(strategy.st, name="ruleSignal",
  arguments=list(sigcol="golong",
                 sigval=TRUE,
                 ordertype="market",
                 orderside="long",
                 replace=TRUE,
                 prefer="Price",
                 orderqty=1),
  type="enter", path.dep=TRUE, label="long")

#exit rule
add.rule(strategy.st, name = "ruleSignal",
  arguments=list(sigcol="exitlong",
                 sigval=TRUE,
                 ordertype="market",
                 orderside="long",
                 replace=TRUE,
                 prefer="Price",
                 orderqty=-1),
  type="exit", path.dep=TRUE, label="exitlong")

#apply strategy
t1 <- Sys.time()
out2 <- applyStrategy(strategy=strategy.st, portfolios=portfolio.st, debug=TRUE)
t2 <- Sys.time()
print(t2-t1)
head(mktdata)
nrow(mktdata)

总结一下这是做多时间框架策略的最佳方法吗?

1 个答案:

答案 0 :(得分:2)

以下两种方法可将多时间范围指示符/信号合并到您的策略中。两者都只使用quantstrat样本数据开箱即用。

两者都遵循相同的策略(并给出相同的结果):该策略在1分钟柱和SMA(10)上使用SMA(20) 在30分钟的柱上产生交易信号。当输入多头头寸时 SMA(20,1分钟柱)穿过SMA(10,30分钟柱)。退出很久 当SMA(20,1分钟柱)穿过SMA(10,30分钟柱)时的位置

方法1:在较低的时间频率内建立价格数据和指标 add.indicator调用的自定义函数。 (你不能进入更高的时间频率 比符号的原始市场数据)。

from <- "2002-10-20"
to <- "2002-10-24"

symbols <- "GBPUSD"
# Load 1 minute data stored in the quantstrat package
getSymbols.FI(Symbols = symbols,
              dir=system.file('extdata',package='quantstrat'),
              from=from, 
              to=to
)

currency(c('GBP', 'USD'))
exchange_rate('GBPUSD', tick_size=0.0001)

strategy.st <- "multiFrame"
portfolio.st <- "multiFrame"
account.st <- "multiFrame"

initEq <- 50000

rm.strat(strategy.st)
initPortf(portfolio.st, symbols = symbols)
initAcct(account.st, portfolios = portfolio.st, initEq = initEq)
initOrders(portfolio.st)
strategy(strategy.st, store = TRUE)

# Create an SMA on 20 1 minute bars:
add.indicator(strategy.st, name = "SMA", 
              arguments = list(x = quote(Cl(mktdata)),
                                n = 20), 
              label = "MA20")

# Define the function that add.indicator will use to create an SMA(10) on 30 minute bars:
ind30minMA <- function(x, n30min = 10) {

  if (!is.OHLC(x)) 
    stop("Must pass in OHLC data")
  x.h <- to.period(x[, 1:4], period = "minutes", k = 30, indexAt = "endof") 
  #^ Ensure that the timestamp on the lower frequency data is at the END of the bar/candle, to avoid look forward bias.

  # If you need to know what symbol you are currently processing:
  # symbol <- parent.frame(n = 2)$symbol
  sma.h <- SMA(Cl(x.h), n = n30min)
  r <- merge(sma.h, xts(, index(x)), fill= na.locf) 
  #^ Carry forward the last value, no lookforward bias introduced

  r <- r[index(x)]
  # if you don't return the same # of rows in the argument x, then quantstrat won't work correctly. So let's check the data is OK after the merge above:
  stopifnot(NROW(r) == NROW(x))
  r
}

add.indicator(strategy.st, name = "ind30minMA", 
              arguments = list(x = quote(mktdata),
                               n30min = 10), 
              label = "MA30minbar")

add.signal(strategy.st, name = "sigCrossover", 
              arguments = list(columns = c("SMA.MA20", "SMA.MA30minbar"),
                               relationship = "gt"),
              label = "FastCrossUp")

add.signal(strategy.st, name = "sigCrossover", 
           arguments = list(columns = c("SMA.MA20", "SMA.MA30minbar"),
                            relationship = "lt"),
           label = "FastCrossDn")

add.rule(strategy.st,name='ruleSignal', 
         arguments = list(sigcol="FastCrossUp",
                          sigval=TRUE, 
                          orderqty= 100, 
                          ordertype='market', 
                          orderside='long', 
                          threshold=NULL),
         type='enter',
         label='enterL',
         storefun=FALSE
)

add.rule(strategy.st,name='ruleSignal',
         arguments = list(sigcol="FastCrossDn",
                          sigval=TRUE,
                          orderqty='all',
                          ordertype='market',
                          orderside='long',
                          threshold=NULL,
                          orderset='default',
                          replace = TRUE),
         type='exit',
         label='exitL'
)


applyStrategy(strategy.st, portfolio.st)


tail(mktdata)
# Open   High    Low  Close Volume SMA.MA20 SMA.MA30minbar FastCrossUp FastCrossDn
# 2002-10-24 17:54:00 1.5552 1.5552 1.5552 1.5552      0 1.555115        1.55467          NA          NA
# 2002-10-24 17:55:00 1.5552 1.5552 1.5551 1.5551      0 1.555120        1.55467          NA          NA
# 2002-10-24 17:56:00 1.5551 1.5551 1.5551 1.5551      0 1.555125        1.55467          NA          NA
# 2002-10-24 17:57:00 1.5551 1.5551 1.5551 1.5551      0 1.555130        1.55467          NA          NA
# 2002-10-24 17:58:00 1.5551 1.5551 1.5551 1.5551      0 1.555130        1.55467          NA          NA
# 2002-10-24 17:59:00 1.5551 1.5551 1.5551 1.5551      0 1.555135        1.55478          NA          NA

tx <- getTxns(portfolio.st, "GBPUSD")
# Record total PL earned.  This number should be identical to the result from the second approach listed below:
sum(tx$Net.Txn.Realized.PL)
# -0.03

方法2:我们的想法是,我们已经在[symbol].d的全局命名空间中使用名称计算了每日市场数据(请参阅下面的内容)。显然,这些日常数据也可以从磁盘加载到内存中。我们在不同的时间频率上使用这些预先计算的数据集,而不是计算指标函数内的条形数据(例如在上面的indDailyMA中完成):

这种方法可以说是更高级和更高效的内存,因为我们不计算聚合(例如,在使用tick数据时计算成本可能很高)。

library(quantstrat)

from <- "2002-10-20"
to <- "2002-10-24"

symbols <- "GBPUSD"
# Load 1 minute data stored in the quantstrat package
getSymbols.FI(Symbols = symbols,
              dir=system.file('extdata',package='quantstrat'),
              from=from, 
              to=to
)

currency(c('GBP', 'USD'))
exchange_rate('GBPUSD', tick_size=0.0001)

strategy.st <- "multiFrame"
portfolio.st <- "multiFrame"
account.st <- "multiFrame"

# Parameters:

initEq <- 50000



rm.strat(strategy.st)
initPortf(portfolio.st, symbols = symbols)
initAcct(account.st, portfolios = portfolio.st, initEq = initEq)
initOrders(portfolio.st)
strategy(strategy.st, store = TRUE)


GBPUSD <- GBPUSD[, colnames(GBPUSD) != "Volume"]

# Before running the backtest, create the lower frequency market data
GBPUSD.30m <- to.period(OHLC(GBPUSD), period = "minutes", k = 30, indexAt = "endof", name = "GBPUSD") 

GBPUSD.1m.idx <- index(GBPUSD)

NROW(GBPUSD)
# 5276

# Add the lower frequency data indicators to the higher frequency data that will be processed in quantstrat.  Fill forward the lower frequency moving average

GBPUSD <- merge(GBPUSD, setNames(SMA(Cl(GBPUSD.30m), n = 10), "SMA.MA30minbar"))
GBPUSD$SMA.MA30minbar <- na.locf(GBPUSD$SMA.MA30minbar)

# Note: Short hand for the above will the fill argument, which can be helpful in special cases where NAs only exist in the new data to be added:
# GBPUSD <- merge(GBPUSD, setNames(SMA(Cl(GBPUSD.30m), n = 10), "SMA.MA30minbar"),  fill = na.locf)

NROW(GBPUSD)
# 5276

# After doing this merge, sometimes extra rows will appear beyond what GBPUSD (based on the original 1 min bar data) 
GBPUSD <- GBPUSD[GBPUSD.1m.idx, ]

# Now GBPUSD, which will be the raw data used in applyStrategy, already contains the 30 min bar indicators.

add.indicator(strategy.st, name = "SMA", 
              arguments = list(x = quote(Cl(mktdata)),
                               n = 20), 
              label = "MA20")



add.signal(strategy.st, name = "sigCrossover", 
           arguments = list(columns = c("SMA.MA20", "SMA.MA30minbar"),
                            relationship = "gt"),
           label = "FastCrossUp")

add.signal(strategy.st, name = "sigCrossover", 
           arguments = list(columns = c("SMA.MA20", "SMA.MA30minbar"),
                            relationship = "lt"),
           label = "FastCrossDn")

add.rule(strategy.st,name='ruleSignal', 
         arguments = list(sigcol="FastCrossUp",
                          sigval=TRUE, 
                          orderqty= 100, 
                          ordertype='market', 
                          orderside='long', 
                          threshold=NULL),
         type='enter',
         label='enterL',
         storefun=FALSE
)

add.rule(strategy.st,name='ruleSignal',
         arguments = list(sigcol="FastCrossDn",
                          sigval=TRUE,
                          orderqty='all',
                          ordertype='market',
                          orderside='long',
                          threshold=NULL,
                          orderset='sysMACD',
                          replace = TRUE),
         type='exit',
         label='exitL'
)


applyStrategy(strategy.st, portfolio.st)


tail(mktdata)
# Open   High    Low  Close SMA.MA30minbar SMA.MA20 FastCrossUp FastCrossDn
# 2002-10-24 17:54:00 1.5552 1.5552 1.5552 1.5552        1.55467 1.555115          NA          NA
# 2002-10-24 17:55:00 1.5552 1.5552 1.5551 1.5551        1.55467 1.555120          NA          NA
# 2002-10-24 17:56:00 1.5551 1.5551 1.5551 1.5551        1.55467 1.555125          NA          NA
# 2002-10-24 17:57:00 1.5551 1.5551 1.5551 1.5551        1.55467 1.555130          NA          NA
# 2002-10-24 17:58:00 1.5551 1.5551 1.5551 1.5551        1.55467 1.555130          NA          NA
# 2002-10-24 17:59:00 1.5551 1.5551 1.5551 1.5551        1.55478 1.555135          NA          NA

tx <- getTxns(portfolio.st, "GBPUSD")
sum(tx$Net.Txn.Realized.PL)
# -0.03

# Same result as the first approach, as we would expect

您可能还会发现有关此主题的其他参考资料很有用:

Generating indicators of different periodicity in quantstrat

http://r.789695.n4.nabble.com/R-Quantstrat-package-question-td3772989.html