我是生存分析的新手。我试图了解在数据集中包含没有任何内容的测量值是否很重要。
我有以下虚构数据:三名患者,
我尝试了以下两个例子
require(flexsurv)
surv_test <- with(data.frame(status = c(1,0,0,1), time = c(12L, 13L,1L, 1L)), Surv(time, status))
flexsurvreg(surv_test~1, dist = "weibull")
#Call:
#flexsurvreg(formula = surv_test ~ 1, dist = "weibull")
#Estimates:
# est L95% U95% se
#shape 0.937 0.295 2.973 0.552
#scale 13.755 3.001 63.035 10.683
#N = 4, Events: 2, Censored: 2
#Total time at risk: 27
#Log-likelihood = -7.199135, df = 2
#AIC = 18.39827
和
surv_test <- with(data.frame(status = c(1,0,1), time = c(12L, 14L, 1L)), Surv(time, status))
flexsurvreg(surv_test~1, dist = "weibull")
#Call:
#flexsurvreg(formula = surv_test ~ 1, dist = "weibull")
#Estimates:
# est L95% U95% se
#shape 0.844 0.244 2.922 0.535
#scale 13.883 2.635 73.140 11.770
#N = 3, Events: 2, Censored: 1
#Total time at risk: 27
#Log-likelihood = -7.167346, df = 2
#AIC = 18.33469
结果显示两者之间存在明显差异,我想知道是否有人可以解释为什么包含患者未患病的观察结果非常重要。谢谢!