在pandas数据帧中查找目标值

时间:2015-08-16 17:10:47

标签: python pandas

我有一个多级数据框df。作为专栏,我有不同的"对象" 我分析一下。作为行索引,我有一个案例ID lc和时间t

我需要为每个案例lc找到时间t(理想情况下是内插的,但是 最接近的值很好),每个对象达到目标值。

此目标值是时间t==0处给定对象的函数。

import pandas as pd
print(pd.__version__)

0.16.2

虚拟数据集示例:

data = {1: {(1014, 0.0): 20.25,
     (1014, 0.0991): 19.08,
     (1014, 0.1991): 18.43,
     (1014, 0.2991): 19.03,
     (1014, 0.3991): 18.71,
     (1015, 0.0): 20.22,
     (1015, 0.0991): 19.3,
     (1015, 0.1991): 18.68,
     (1015, 0.2991): 18.22,
     (1015, 0.3991): 17.84,
     (1016, 0.0): 21.75,
     (1016, 0.0991): 19.97,
     (1016, 0.1991): 19.65,
     (1016, 0.2991): 19.29,
     (1016, 0.3991): 18.94
    },
 2: {(1014, 0.0): 29.11,
     (1014, 0.0991): 28.68,
     (1014, 0.1991): 28.27,
     (1014, 0.2991): 27.46,
     (1014, 0.3991): 26.96,
     (1015, 0.0): 29.22,
     (1015, 0.0991): 28.64,
     (1015, 0.1991): 28.18,
     (1015, 0.2991): 27.74,
     (1015, 0.3991): 27.25,
     (1016, 0.0): 29.17,
     (1016, 0.0991): 28.68,
     (1016, 0.1991): 28.17,
     (1016, 0.2991): 27.68,
     (1016, 0.3991): 27.18
    },
 3: {(1014, 0.0): 22.01,
     (1014, 0.0991): 21.5,
     (1014, 0.1991): 21.18,
     (1014, 0.2991): 20.58,
     (1014, 0.3991): 20.21,
     (1015, 0.0): 21.81,
     (1015, 0.0991): 21.46,
     (1015, 0.1991): 21.11,
     (1015, 0.2991): 20.78,
     (1015, 0.3991): 20.42,
     (1016, 0.0): 21.82,
     (1016, 0.0991): 21.49,
     (1016, 0.1991): 21.11,
     (1016, 0.2991): 20.75,
     (1016, 0.3991): 20.37
    }}

df = pd.DataFrame(data).sort()
df.index.names=['case', 't']

Dataframe看起来像:

                 1      2      3
case t                          
1014 0.0000  20.25  29.11  22.01
     0.0991  19.08  28.68  21.50
     0.1991  18.43  28.27  21.18
     0.2991  19.03  27.46  20.58
     0.3991  18.71  26.96  20.21
1015 0.0000  20.22  29.22  21.81
     0.0991  19.30  28.64  21.46
     0.1991  18.68  28.18  21.11
     0.2991  18.22  27.74  20.78
     0.3991  17.84  27.25  20.42
1016 0.0000  21.75  29.17  21.82
     0.0991  19.97  28.68  21.49
     0.1991  19.65  28.17  21.11
     0.2991  19.29  27.68  20.75
     0.3991  18.94  27.18  20.37

目标值是时间t==0的值的函数。 通常,对于半衰期,这将是k = 0.5。对于当前样本,我们将采用k = 0.926

由于值已排序,因此可以针对每种情况采用第一行。

targets = df.groupby(level='case').first() * 0.926
print(targets)

             1         2         3
case                              
1014  18.75150  26.95586  20.38126
1015  18.72372  27.05772  20.19606
1016  20.14050  27.01142  20.20532

现在,我怎么能简单地构建以下数据帧,如图所示 时间t每个对象达到上面计算的目标值?

             1         2         3
case                              
1014    0.3991    0.3991    0.2991
1015    0.1991    0.3991    0.3991
1016    0.0991    0.3991    0.3991

1 个答案:

答案 0 :(得分:1)

这些有点像黑客,让我们看看是否有更好的解决方案:

In [36]:
targets['t']=0

In [37]:
df2 = df.reset_index().set_index('case') - targets

In [38]:
df3 = df2.groupby(df2.index).transform(lambda x: x.abs()==np.min(x.abs()))

In [39]:
df4 = pd.DataFrame({'1': df2.t[df3[1]],
                    '2': df2.t[df3[2]],
                    '3': df2.t[df3[3]]})

print df4

           1       2       3
case                        
1014  0.3991  0.3991  0.3991
1015  0.1991  0.3991  0.3991
1016  0.0991  0.3991  0.3991