我正在尝试在Haskell中使用automatic differentiation来解决非线性控制问题,但在使其工作时遇到一些问题。我基本上有一个cost
函数,应该在初始状态下进行优化。类型是:
data Reference a = Reference a deriving Functor
data Plant a = Plant a deriving Functor
optimize :: (RealFloat a) => Reference a -> Plant a -> [a] -> [[a]]
optimize ref plant initialInputs = gradientDescent (cost ref plant) initialInputs
cost :: (RealFloat a) => Reference a -> Plant a -> [a] -> a
cost = ...
这会导致以下错误消息:
Couldn't match expected type `Reference
(Numeric.AD.Internal.Reverse.Reverse s a)'
with actual type `t'
because type variable `s' would escape its scope
This (rigid, skolem) type variable is bound by
a type expected by the context:
Data.Reflection.Reifies s Numeric.AD.Internal.Reverse.Tape =>
[Numeric.AD.Internal.Reverse.Reverse s a]
-> Numeric.AD.Internal.Reverse.Reverse s a
at test.hs:13:5-50
Relevant bindings include
initialInputs :: [a] (bound at test.hs:12:20)
ref :: t (bound at test.hs:12:10)
optimize :: t -> t1 -> [a] -> [[a]] (bound at test.hs:12:1)
In the first argument of `cost', namely `ref'
In the first argument of `gradientDescent', namely
`(cost ref plant)'
我甚至不确定我是否正确理解错误。是ref
和plant
的类型是否需要访问s
,这是gradientDescent
的第一个参数的范围内?
是否有可能使这项工作?在寻找解决方案时,我尝试将问题简化为最小的示例,并发现以下定义产生类似的错误消息:
optimize f inputs = gradientDescent f inputs
这看起来很奇怪,因为optimize = gradientDescent
不会产生任何错误。
答案 0 :(得分:4)
cost ref plant
的{{1}}类型[a] -> a
与a
a
相同optimize
optimize :: (RealFloat a) => Reference a -> Plant a -> [a] -> [[a]]
^ ^
| ------------
------------------v v
optimize ref plant initialInputs = gradientDescent (cost ref plant) initialInputs
^ ^
----------------------- |
v v---------------
cost :: (RealFloat a) => Reference a -> Plant a -> [a] -> a
cost = ...
但gradientDescent
的类型是
gradientDescent :: (Traversable f, Fractional a, Ord a) =>
(forall s. Reifies s Tape => f (Reverse s a) -> Reverse s a) ->
f a -> [f a]
gradientDescent
的第一个参数需要能够(任何 s
)[Reverse s a]
并返回Reverse s a
,但{ {1}}只能cost ref plant
返回[a]
。
由于a
和Reference
都是Plant
,您可以从Functor
和ref
转换plant
和Reference a
通过Plant a
auto
Reference (Reverse s a)
到Plant (Reverse s a)
和fmap
。
optimize :: (RealFloat a) => Reference a -> Plant a -> [a] -> [[a]]
optimize ref plant initialInputs = gradientDescent (cost (fmap auto ref) (fmap auto plant)) initialInputs