从用户空间程序访问i2c平台设备

时间:2015-08-14 13:58:58

标签: linux kernel

我试图从am335x_starter_kit中的用户空间访问24c256 eeprom内容。

我不必将eeprom驱动程序添加到内核中并在board.c文件中进行修改,因为主板已经使用eeprom来访问某些板配置和Mac地址信息。

我只想从用户空间访问eeprom内容。

之前我使用过字符设备的读写功能,但i2c平台设备没有这些功能。

struct i2c_driver {
  unsigned int class;
  int (* attach_adapter) (struct i2c_adapter *);
  int (* probe) (struct i2c_client *, const struct i2c_device_id *);
  int (* remove) (struct i2c_client *);
  void (* shutdown) (struct i2c_client *);
  void (* alert) (struct i2c_client *, unsigned int data);
  int (* command) (struct i2c_client *client, unsigned int cmd, void *arg);
  struct device_driver driver;
  const struct i2c_device_id * id_table;
  int (* detect) (struct i2c_client *, struct i2c_board_info *);
  const unsigned short * address_list;
  struct list_head clients;
};  

这是eeprom驱动程序。 Board文件从内核使用它来获取mac地址和电路板配置数据。

/*
 * at24.c - handle most I2C EEPROMs
 *
 * Copyright (C) 2005-2007 David Brownell
 * Copyright (C) 2008 Wolfram Sang, Pengutronix
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/sysfs.h>
#include <linux/mod_devicetable.h>
#include <linux/log2.h>
#include <linux/bitops.h>
#include <linux/jiffies.h>
#include <linux/of.h>
#include <linux/i2c.h>
#include <linux/i2c/at24.h>

/*
 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
 * Differences between different vendor product lines (like Atmel AT24C or
 * MicroChip 24LC, etc) won't much matter for typical read/write access.
 * There are also I2C RAM chips, likewise interchangeable. One example
 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
 *
 * However, misconfiguration can lose data. "Set 16-bit memory address"
 * to a part with 8-bit addressing will overwrite data. Writing with too
 * big a page size also loses data. And it's not safe to assume that the
 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
 * uses 0x51, for just one example.
 *
 * Accordingly, explicit board-specific configuration data should be used
 * in almost all cases. (One partial exception is an SMBus used to access
 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
 *
 * So this driver uses "new style" I2C driver binding, expecting to be
 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
 * similar kernel-resident tables; or, configuration data coming from
 * a bootloader.
 *
 * Other than binding model, current differences from "eeprom" driver are
 * that this one handles write access and isn't restricted to 24c02 devices.
 * It also handles larger devices (32 kbit and up) with two-byte addresses,
 * which won't work on pure SMBus systems.
 */

struct at24_data {
    struct at24_platform_data chip;
    struct memory_accessor macc;
    int use_smbus;

    /*
     * Lock protects against activities from other Linux tasks,
     * but not from changes by other I2C masters.
     */
    struct mutex lock;
    struct bin_attribute bin;

    u8 *writebuf;
    unsigned write_max;
    unsigned num_addresses;

    /*
     * Some chips tie up multiple I2C addresses; dummy devices reserve
     * them for us, and we'll use them with SMBus calls.
     */
    struct i2c_client *client[];
};

/*
 * This parameter is to help this driver avoid blocking other drivers out
 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
 * clock, one 256 byte read takes about 1/43 second which is excessive;
 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
 *
 * This value is forced to be a power of two so that writes align on pages.
 */
static unsigned io_limit = 128;
module_param(io_limit, uint, 0);
MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");

/*
 * Specs often allow 5 msec for a page write, sometimes 20 msec;
 * it's important to recover from write timeouts.
 */
static unsigned write_timeout = 25;
module_param(write_timeout, uint, 0);
MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");

#define AT24_SIZE_BYTELEN 5
#define AT24_SIZE_FLAGS 8

#define AT24_BITMASK(x) (BIT(x) - 1)

/* create non-zero magic value for given eeprom parameters */
#define AT24_DEVICE_MAGIC(_len, _flags)         \
    ((1 << AT24_SIZE_FLAGS | (_flags))      \
        << AT24_SIZE_BYTELEN | ilog2(_len))

static const struct i2c_device_id at24_ids[] = {
    /* needs 8 addresses as A0-A2 are ignored */
    { "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
    /* old variants can't be handled with this generic entry! */
    { "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
    { "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
    /* spd is a 24c02 in memory DIMMs */
    { "spd", AT24_DEVICE_MAGIC(2048 / 8,
        AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
    { "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
    /* 24rf08 quirk is handled at i2c-core */
    { "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
    { "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
    { "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
    { "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
    { "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
    { "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
    { "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
    { "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
    { "at24", 0 },
    { /* END OF LIST */ }
};
MODULE_DEVICE_TABLE(i2c, at24_ids);

/*-------------------------------------------------------------------------*/

/*
 * This routine supports chips which consume multiple I2C addresses. It
 * computes the addressing information to be used for a given r/w request.
 * Assumes that sanity checks for offset happened at sysfs-layer.
 */
static struct i2c_client *at24_translate_offset(struct at24_data *at24,
        unsigned *offset)
{
    unsigned i;

    if (at24->chip.flags & AT24_FLAG_ADDR16) {
        i = *offset >> 16;
        *offset &= 0xffff;
    } else {
        i = *offset >> 8;
        *offset &= 0xff;
    }

    return at24->client[i];
}

static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
        unsigned offset, size_t count)
{
    struct i2c_msg msg[2];
    u8 msgbuf[2];
    struct i2c_client *client;
    unsigned long timeout, read_time;
    int status, i;

    memset(msg, 0, sizeof(msg));

    /*
     * REVISIT some multi-address chips don't rollover page reads to
     * the next slave address, so we may need to truncate the count.
     * Those chips might need another quirk flag.
     *
     * If the real hardware used four adjacent 24c02 chips and that
     * were misconfigured as one 24c08, that would be a similar effect:
     * one "eeprom" file not four, but larger reads would fail when
     * they crossed certain pages.
     */

    /*
     * Slave address and byte offset derive from the offset. Always
     * set the byte address; on a multi-master board, another master
     * may have changed the chip's "current" address pointer.
     */
    client = at24_translate_offset(at24, &offset);

    if (count > io_limit)
        count = io_limit;

    switch (at24->use_smbus) {
    case I2C_SMBUS_I2C_BLOCK_DATA:
        /* Smaller eeproms can work given some SMBus extension calls */
        if (count > I2C_SMBUS_BLOCK_MAX)
            count = I2C_SMBUS_BLOCK_MAX;
        break;
    case I2C_SMBUS_WORD_DATA:
        count = 2;
        break;
    case I2C_SMBUS_BYTE_DATA:
        count = 1;
        break;
    default:
        /*
         * When we have a better choice than SMBus calls, use a
         * combined I2C message. Write address; then read up to
         * io_limit data bytes. Note that read page rollover helps us
         * here (unlike writes). msgbuf is u8 and will cast to our
         * needs.
         */
        i = 0;
        if (at24->chip.flags & AT24_FLAG_ADDR16)
            msgbuf[i++] = offset >> 8;
        msgbuf[i++] = offset;

        msg[0].addr = client->addr;
        msg[0].buf = msgbuf;
        msg[0].len = i;

        msg[1].addr = client->addr;
        msg[1].flags = I2C_M_RD;
        msg[1].buf = buf;
        msg[1].len = count;
    }

    /*
     * Reads fail if the previous write didn't complete yet. We may
     * loop a few times until this one succeeds, waiting at least
     * long enough for one entire page write to work.
     */
    timeout = jiffies + msecs_to_jiffies(write_timeout);
    do {
        read_time = jiffies;
        switch (at24->use_smbus) {
        case I2C_SMBUS_I2C_BLOCK_DATA:
            status = i2c_smbus_read_i2c_block_data(client, offset,
                    count, buf);
            break;
        case I2C_SMBUS_WORD_DATA:
            status = i2c_smbus_read_word_data(client, offset);
            if (status >= 0) {
                buf[0] = status & 0xff;
                buf[1] = status >> 8;
                status = count;
            }
            break;
        case I2C_SMBUS_BYTE_DATA:
            status = i2c_smbus_read_byte_data(client, offset);
            if (status >= 0) {
                buf[0] = status;
                status = count;
            }
            break;
        default:
            status = i2c_transfer(client->adapter, msg, 2);
            if (status == 2)
                status = count;
        }
        dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
                count, offset, status, jiffies);

        if (status == count)
            return count;

        /* REVISIT: at HZ=100, this is sloooow */
        msleep(1);
    } while (time_before(read_time, timeout));

    return -ETIMEDOUT;
}

static ssize_t at24_read(struct at24_data *at24,
        char *buf, loff_t off, size_t count)
{
    ssize_t retval = 0;

    if (unlikely(!count))
        return count;

    /*
     * Read data from chip, protecting against concurrent updates
     * from this host, but not from other I2C masters.
     */
    mutex_lock(&at24->lock);

    while (count) {
        ssize_t status;

        status = at24_eeprom_read(at24, buf, off, count);
        if (status <= 0) {
            if (retval == 0)
                retval = status;
            break;
        }
        buf += status;
        off += status;
        count -= status;
        retval += status;
    }

    mutex_unlock(&at24->lock);

    return retval;
}

static ssize_t at24_bin_read(struct file *filp, struct kobject *kobj,
        struct bin_attribute *attr,
        char *buf, loff_t off, size_t count)
{
    struct at24_data *at24;

    at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
    return at24_read(at24, buf, off, count);
}


/*
 * Note that if the hardware write-protect pin is pulled high, the whole
 * chip is normally write protected. But there are plenty of product
 * variants here, including OTP fuses and partial chip protect.
 *
 * We only use page mode writes; the alternative is sloooow. This routine
 * writes at most one page.
 */
static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
        unsigned offset, size_t count)
{
    struct i2c_client *client;
    struct i2c_msg msg;
    ssize_t status;
    unsigned long timeout, write_time;
    unsigned next_page;

    /* Get corresponding I2C address and adjust offset */
    client = at24_translate_offset(at24, &offset);

    /* write_max is at most a page */
    if (count > at24->write_max)
        count = at24->write_max;

    /* Never roll over backwards, to the start of this page */
    next_page = roundup(offset + 1, at24->chip.page_size);
    if (offset + count > next_page)
        count = next_page - offset;

    /* If we'll use I2C calls for I/O, set up the message */
    if (!at24->use_smbus) {
        int i = 0;

        msg.addr = client->addr;
        msg.flags = 0;

        /* msg.buf is u8 and casts will mask the values */
        msg.buf = at24->writebuf;
        if (at24->chip.flags & AT24_FLAG_ADDR16)
            msg.buf[i++] = offset >> 8;

        msg.buf[i++] = offset;
        memcpy(&msg.buf[i], buf, count);
        msg.len = i + count;
    }

    /*
     * Writes fail if the previous one didn't complete yet. We may
     * loop a few times until this one succeeds, waiting at least
     * long enough for one entire page write to work.
     */
    timeout = jiffies + msecs_to_jiffies(write_timeout);
    do {
        write_time = jiffies;
        if (at24->use_smbus) {
            status = i2c_smbus_write_i2c_block_data(client,
                    offset, count, buf);
            if (status == 0)
                status = count;
        } else {
            status = i2c_transfer(client->adapter, &msg, 1);
            if (status == 1)
                status = count;
        }
        dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
                count, offset, status, jiffies);

        if (status == count)
            return count;

        /* REVISIT: at HZ=100, this is sloooow */
        msleep(1);
    } while (time_before(write_time, timeout));

    return -ETIMEDOUT;
}

static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
              size_t count)
{
    ssize_t retval = 0;

    if (unlikely(!count))
        return count;

    /*
     * Write data to chip, protecting against concurrent updates
     * from this host, but not from other I2C masters.
     */
    mutex_lock(&at24->lock);

    while (count) {
        ssize_t status;

        status = at24_eeprom_write(at24, buf, off, count);
        if (status <= 0) {
            if (retval == 0)
                retval = status;
            break;
        }
        buf += status;
        off += status;
        count -= status;
        retval += status;
    }

    mutex_unlock(&at24->lock);

    return retval;
}

static ssize_t at24_bin_write(struct file *filp, struct kobject *kobj,
        struct bin_attribute *attr,
        char *buf, loff_t off, size_t count)
{
    struct at24_data *at24;

    at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
    return at24_write(at24, buf, off, count);
}

/*-------------------------------------------------------------------------*/

/*
 * This lets other kernel code access the eeprom data. For example, it
 * might hold a board's Ethernet address, or board-specific calibration
 * data generated on the manufacturing floor.
 */

static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf,
             off_t offset, size_t count)
{
    struct at24_data *at24 = container_of(macc, struct at24_data, macc);

    return at24_read(at24, buf, offset, count);
}

static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf,
              off_t offset, size_t count)
{
    struct at24_data *at24 = container_of(macc, struct at24_data, macc);

    return at24_write(at24, buf, offset, count);
}

/*-------------------------------------------------------------------------*/

#ifdef CONFIG_OF
static void at24_get_ofdata(struct i2c_client *client,
        struct at24_platform_data *chip)
{
    const __be32 *val;
    struct device_node *node = client->dev.of_node;

    if (node) {
        if (of_get_property(node, "read-only", NULL))
            chip->flags |= AT24_FLAG_READONLY;
        val = of_get_property(node, "pagesize", NULL);
        if (val)
            chip->page_size = be32_to_cpup(val);
    }
}
#else
static void at24_get_ofdata(struct i2c_client *client,
        struct at24_platform_data *chip)
{ }
#endif /* CONFIG_OF */

static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
    struct at24_platform_data chip;
    bool writable;
    int use_smbus = 0;
    struct at24_data *at24;
    int err;
    unsigned i, num_addresses;
    kernel_ulong_t magic;

    if (client->dev.platform_data) {
        chip = *(struct at24_platform_data *)client->dev.platform_data;
    } else {
        if (!id->driver_data) {
            err = -ENODEV;
            goto err_out;
        }
        magic = id->driver_data;
        chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
        magic >>= AT24_SIZE_BYTELEN;
        chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
        /*
         * This is slow, but we can't know all eeproms, so we better
         * play safe. Specifying custom eeprom-types via platform_data
         * is recommended anyhow.
         */
        chip.page_size = 1;

        /* update chipdata if OF is present */
        at24_get_ofdata(client, &chip);

        chip.setup = NULL;
        chip.context = NULL;
    }

    if (!is_power_of_2(chip.byte_len))
        dev_warn(&client->dev,
            "byte_len looks suspicious (no power of 2)!\n");
    if (!chip.page_size) {
        dev_err(&client->dev, "page_size must not be 0!\n");
        err = -EINVAL;
        goto err_out;
    }
    if (!is_power_of_2(chip.page_size))
        dev_warn(&client->dev,
            "page_size looks suspicious (no power of 2)!\n");

    /* Use I2C operations unless we're stuck with SMBus extensions. */
    if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
        if (chip.flags & AT24_FLAG_ADDR16) {
            err = -EPFNOSUPPORT;
            goto err_out;
        }
        if (i2c_check_functionality(client->adapter,
                I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
            use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
        } else if (i2c_check_functionality(client->adapter,
                I2C_FUNC_SMBUS_READ_WORD_DATA)) {
            use_smbus = I2C_SMBUS_WORD_DATA;
        } else if (i2c_check_functionality(client->adapter,
                I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
            use_smbus = I2C_SMBUS_BYTE_DATA;
        } else {
            err = -EPFNOSUPPORT;
            goto err_out;
        }
    }
//???????????????
    if (chip.flags & AT24_FLAG_TAKE8ADDR)
        num_addresses = 8;
    else
        num_addresses = DIV_ROUND_UP(chip.byte_len, (chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);

    at24 = kzalloc(sizeof(struct at24_data) + num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
    if (!at24) {
        err = -ENOMEM;
        goto err_out;
    }

    mutex_init(&at24->lock);
    at24->use_smbus = use_smbus;
    at24->chip = chip;
    at24->num_addresses = num_addresses;

    /*
     * Export the EEPROM bytes through sysfs, since that's convenient.
     * By default, only root should see the data (maybe passwords etc)
     */
    sysfs_bin_attr_init(&at24->bin);
    at24->bin.attr.name = "eeprom";
    at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR;
    at24->bin.read = at24_bin_read;
    at24->bin.size = chip.byte_len;

    at24->macc.read = at24_macc_read;

    writable = !(chip.flags & AT24_FLAG_READONLY);
    if (writable) {
        if (!use_smbus || i2c_check_functionality(client->adapter,
                I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {

            unsigned write_max = chip.page_size;

            at24->macc.write = at24_macc_write;

            at24->bin.write = at24_bin_write;
            at24->bin.attr.mode |= S_IWUSR;

            if (write_max > io_limit)
                write_max = io_limit;
            if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
                write_max = I2C_SMBUS_BLOCK_MAX;
            at24->write_max = write_max;

            /* buffer (data + address at the beginning) */
            at24->writebuf = kmalloc(write_max + 2, GFP_KERNEL);
            if (!at24->writebuf) {
                err = -ENOMEM;
                goto err_struct;
            }
        } else {
            dev_warn(&client->dev,
                "cannot write due to controller restrictions.");
        }
    }

    at24->client[0] = client;

    /* use dummy devices for multiple-address chips */
    for (i = 1; i < num_addresses; i++) {
        at24->client[i] = i2c_new_dummy(client->adapter,
                    client->addr + i);
        if (!at24->client[i]) {
            dev_err(&client->dev, "address 0x%02x unavailable\n",
                    client->addr + i);
            err = -EADDRINUSE;
            goto err_clients;
        }
    }

    err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin);
    if (err)
        goto err_clients;

    i2c_set_clientdata(client, at24);

    dev_info(&client->dev, "%zu byte %s EEPROM, %s, %u bytes/write\n", at24->bin.size, client->name,
        writable ? "writable" : "read-only", at24->write_max);
    if (use_smbus == I2C_SMBUS_WORD_DATA ||
        use_smbus == I2C_SMBUS_BYTE_DATA) {
        dev_notice(&client->dev, "Falling back to %s reads, "
               "performance will suffer\n", use_smbus ==
               I2C_SMBUS_WORD_DATA ? "word" : "byte");
    }

    /* export data to kernel code */
    if (chip.setup)
        chip.setup(&at24->macc, chip.context);

    return 0;

err_clients:
    for (i = 1; i < num_addresses; i++)
        if (at24->client[i])
            i2c_unregister_device(at24->client[i]);

    kfree(at24->writebuf);
err_struct:
    kfree(at24);
err_out:
    dev_dbg(&client->dev, "probe error %d\n", err);
    return err;
}

/*-------------------------------------------------------------------------*/

static int __devexit at24_remove(struct i2c_client *client)
{
    struct at24_data *at24;
    int i;

    at24 = i2c_get_clientdata(client);
    sysfs_remove_bin_file(&client->dev.kobj, &at24->bin);

    for (i = 1; i < at24->num_addresses; i++)
        i2c_unregister_device(at24->client[i]);

    kfree(at24->writebuf);
    kfree(at24);
    return 0;
}

/*-------------------------------------------------------------------------*/

static struct i2c_driver at24_driver = {
    .driver = {
        .name = "at24",
        .owner = THIS_MODULE,
    },
    .probe = at24_probe,
    .remove = __devexit_p(at24_remove),
    .id_table = at24_ids,
};

static int __init at24_init(void)
{
    if (!io_limit) {
        pr_err("at24: io_limit must not be 0!\n");
        return -EINVAL;
    }

    io_limit = rounddown_pow_of_two(io_limit);
    return i2c_add_driver(&at24_driver);
}
module_init(at24_init);

static void __exit at24_exit(void)
{
    i2c_del_driver(&at24_driver);
}
module_exit(at24_exit);

MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
MODULE_AUTHOR("David Brownell and Wolfram Sang");
MODULE_LICENSE("GPL");

这些是来自电路板文件的片段:

static struct i2c_board_info __initdata am335x_i2c0_boardinfo[] = {
{
    /* Baseboard board EEPROM */
    I2C_BOARD_INFO("24c256", BASEBOARD_I2C_ADDR),
    .platform_data  = &am335x_baseboard_eeprom_info,
},
.
.


static struct at24_platform_data am335x_baseboard_eeprom_info = {
    .byte_len       = (256*1024) / 8,
    .page_size      = 64,
    .flags          = AT24_FLAG_ADDR16,
    .setup          = am335x_evm_setup,
    .context        = (void *)NULL,
};


static void am335x_evm_setup(struct memory_accessor *mem_acc, void *context)
{
int ret;
char tmp[10];
struct device *mpu_dev;

/* 1st get the MAC address from EEPROM */
ret = mem_acc->read(mem_acc, (char *)&am335x_mac_addr,
    EEPROM_MAC_ADDRESS_OFFSET, sizeof(am335x_mac_addr));
.
.
.

如何从用户空间读取/写入eeprom内容。 我应该使用sysfs吗?我该怎么办?

1 个答案:

答案 0 :(得分:1)

EEPROM:

设置MAC和序列号的一部分,但了解EEPROM是否正常工作的唯一方法是读取其内容。 $ cat / sys / bus / i2c / devices / 2-0057 / eeprom | hexdump -C