我有两个小面包裹图,p1
和p2
p1
p2
如您所见,两个图的x轴值对齐,但y轴值相差很大。我想将p2叠加到p1上,保持p1 y轴在左边,并在右边创建另一个p2 y轴。
这就是我现在所拥有的,但我不确定如何为p1和p2正确组合grobs。
library(ggplot2)
library(gtable)
library(grid)
themer <- theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
panel.margin = unit(0, "lines"),
strip.background = element_rect(fill="#F8F8F8"))
p2 <- ggplot(normaldens, aes(y=density,x=predicted)) +
geom_line(color="red") +
facet_wrap(~ motif) +
labs(title=paste("Methylation Score:",motif_f[j]),x="Methylation Score",y="Density") +
themer
p1 <- ggplot(dat, aes(x=score)) +
geom_histogram( binwidth = bin_width,col="red",fill="blue",alpha=0.2) +
facet_wrap(~ motif) +
labs(title=paste("Methylation Score:",motif_f[j]),x="Methylation Score",y="Counts") +
themer
###### COMBINE GROBS #######
g1 <- ggplot_gtable(ggplot_build(p1))
g2 <- ggplot_gtable(ggplot_build(p2))
combo_grob <- g2
pos <- length(combo_grob) - 1
combo_grob$grobs[[pos]] <- cbind(g1$grobs[[pos]],
g2$grobs[[pos]], size = 'first')
panel_num <- length(unique(df1$z))
for (i in seq(panel_num))
{
# grid.ls(g1$grobs[[i + 1]])
panel_grob <- getGrob(g1$grobs[[i + 1]], 'geom_point.points',
grep = TRUE, global = TRUE)
combo_grob$grobs[[i + 1]] <- addGrob(combo_grob$grobs[[i + 1]],
panel_grob)
}
pos_a <- grep('axis_l', names(g1$grobs))
axis <- g1$grobs[pos_a]
for (i in seq(along = axis))
{
if (i %in% c(2, 4))
{
pp <- c(subset(g1$layout, name == paste0('panel-', i), se = t:r))
ax <- axis[[1]]$children[[2]]
ax$widths <- rev(ax$widths)
ax$grobs <- rev(ax$grobs)
ax$grobs[[1]]$x <- ax$grobs[[1]]$x - unit(1, "npc") + unit(0.5, "cm")
ax$grobs[[2]]$x <- ax$grobs[[2]]$x - unit(1, "npc") + unit(0.8, "cm")
combo_grob <- gtable_add_cols(combo_grob, g2$widths[g2$layout[pos_a[i],]$l], length(combo_grob$widths) - 1)
combo_grob <- gtable_add_grob(combo_grob, ax, pp$t, length(combo_grob$widths) - 1, pp$b)
}
}
pp <- c(subset(g1$layout, name == 'ylab', se = t:r))
ia <- which(g1$layout$name == "ylab")
ga <- g1$grobs[[ia]]
ga$rot <- 270
ga$x <- ga$x - unit(1, "npc") + unit(1.5, "cm")
combo_grob <- gtable_add_cols(combo_grob, g2$widths[g2$layout[ia,]$l], length(combo_grob$widths) - 1)
combo_grob <- gtable_add_grob(combo_grob, ga, pp$t, length(combo_grob$widths) - 1, pp$b)
combo_grob$layout$clip <- "off"
grid.draw(combo_grob)
我得到了这个错误,我知道这个错误与我合并这两个gtables的方式有关。
gList中的错误(list(x = 0.5,y = 0.5,width = 1,height = 1,just =“center”,: “gList”中只允许“grobs”
答案 0 :(得分:1)
我不认为你可以在ggplot2
内做第二个y轴,但是如何在单个图中绘制密度和直方图,并使用条形标签计算(而不是试图破解第二个y轴)。这是一个示例(使用内置的iris
数据集):
首先,我们计算密度和计数的最大值,并使用它们来创建比例因子,我们将用它来编程确保直方图和密度图具有大致相同的垂直标度。
library(dplyr)
# Find maximum value of density
densMax = iris %>% group_by(Species) %>%
summarise(dens = max(density(Sepal.Length)[["y"]])) %>%
filter(dens == max(dens))
# Find maximum value of bin count
countMax = iris %>%
group_by(Species,
bins=cut(Sepal.Length, seq(floor(min(Sepal.Length)),
ceiling(max(Sepal.Length)),
0.25), right=FALSE)) %>%
summarise(count=n()) %>%
ungroup() %>% filter(count==max(count))
现在我们将直方图条缩放到密度图的大小。 sf
是比例因子:
ggplot(iris, aes(x=Sepal.Length, sf = countMax$count/densMax$dens)) +
geom_histogram(fill=hcl(195,100,65), colour="grey50", binwidth=0.25) +
geom_density(colour="red", aes(y=..density.. * sf)) +
facet_wrap(~ Species) +
themer
或者,您可以向另一个方向前进,并将密度图缩放为直方图:
# Scale histogram bars to size of density plot
ggplot(iris, aes(x=Sepal.Length, sf = densMax$dens/countMax$count)) +
geom_histogram(aes(y=..count..*sf),
fill=hcl(195,100,65), colour="grey50", binwidth=0.25) +
stat_bin(aes(label=..count.., y=..count..*0.5*sf),
geom="text", size=4, color="white", binwidth=0.25) +
geom_density(colour="red") +
facet_wrap(~ Species) +
themer +
labs(y="Density")