R ggplot2双y轴小平面包裹,一个直方图和其他线

时间:2015-08-11 23:39:01

标签: r ggplot2 grid facet-wrap gtable

我有两个小面包裹图,p1p2

p1

enter image description here

p2

enter image description here

如您所见,两个图的x轴值对齐,但y轴值相差很大。我想将p2叠加到p1上,保持p1 y轴在左边,并在右边创建另一个p2 y轴。

这就是我现在所拥有的,但我不确定如何为p1和p2正确组合grobs。

library(ggplot2)
library(gtable)
library(grid)

themer <- theme(panel.grid.major = element_blank(), 
                panel.grid.minor = element_blank(), 
                panel.background = element_blank(),
                panel.margin = unit(0, "lines"),
                strip.background = element_rect(fill="#F8F8F8"))

p2 <- ggplot(normaldens, aes(y=density,x=predicted)) + 
        geom_line(color="red") + 
        facet_wrap(~ motif) + 
        labs(title=paste("Methylation Score:",motif_f[j]),x="Methylation Score",y="Density") +
        themer
p1 <- ggplot(dat, aes(x=score)) +
        geom_histogram( binwidth = bin_width,col="red",fill="blue",alpha=0.2) +  
        facet_wrap(~ motif) + 
        labs(title=paste("Methylation Score:",motif_f[j]),x="Methylation Score",y="Counts") +
        themer

###### COMBINE GROBS #######
g1 <- ggplot_gtable(ggplot_build(p1))
g2 <- ggplot_gtable(ggplot_build(p2))

combo_grob <- g2
pos <- length(combo_grob) - 1
combo_grob$grobs[[pos]] <- cbind(g1$grobs[[pos]],
                                 g2$grobs[[pos]], size = 'first')
panel_num <- length(unique(df1$z))
for (i in seq(panel_num))
{
  # grid.ls(g1$grobs[[i + 1]])
  panel_grob <- getGrob(g1$grobs[[i + 1]], 'geom_point.points',
                        grep = TRUE, global = TRUE)
  combo_grob$grobs[[i + 1]] <- addGrob(combo_grob$grobs[[i + 1]], 
                                       panel_grob)
}       


pos_a <- grep('axis_l', names(g1$grobs))
axis <- g1$grobs[pos_a]
for (i in seq(along = axis))
{
  if (i %in% c(2, 4))
  {
    pp <- c(subset(g1$layout, name == paste0('panel-', i), se = t:r))

    ax <- axis[[1]]$children[[2]]
    ax$widths <- rev(ax$widths)
    ax$grobs <- rev(ax$grobs)
    ax$grobs[[1]]$x <- ax$grobs[[1]]$x - unit(1, "npc") + unit(0.5, "cm")
    ax$grobs[[2]]$x <- ax$grobs[[2]]$x - unit(1, "npc") + unit(0.8, "cm")
    combo_grob <- gtable_add_cols(combo_grob, g2$widths[g2$layout[pos_a[i],]$l], length(combo_grob$widths) - 1)
    combo_grob <- gtable_add_grob(combo_grob, ax,  pp$t, length(combo_grob$widths) - 1, pp$b)
  }
}

pp <- c(subset(g1$layout, name == 'ylab', se = t:r))

ia <- which(g1$layout$name == "ylab")
ga <- g1$grobs[[ia]]
ga$rot <- 270
ga$x <- ga$x - unit(1, "npc") + unit(1.5, "cm")

combo_grob <- gtable_add_cols(combo_grob, g2$widths[g2$layout[ia,]$l], length(combo_grob$widths) - 1)
combo_grob <- gtable_add_grob(combo_grob, ga, pp$t, length(combo_grob$widths) - 1, pp$b)
combo_grob$layout$clip <- "off"

grid.draw(combo_grob)

我得到了这个错误,我知道这个错误与我合并这两个gtables的方式有关。

  

gList中的错误(list(x = 0.5,y = 0.5,width = 1,height = 1,just =“center”,:     “gList”中只允许“grobs”

1 个答案:

答案 0 :(得分:1)

我不认为你可以在ggplot2内做第二个y轴,但是如何在单个图中绘制密度和直方图,并使用条形标签计算(而不是试图破解第二个y轴)。这是一个示例(使用内置的iris数据集):

首先,我们计算密度和计数的最大值,并使用它们来创建比例因子,我们将用它来编程确保直方图和密度图具有大致相同的垂直标​​度。

library(dplyr) 

# Find maximum value of density
densMax = iris %>% group_by(Species) %>%
  summarise(dens = max(density(Sepal.Length)[["y"]])) %>%
  filter(dens == max(dens))

# Find maximum value of bin count
countMax = iris %>% 
  group_by(Species, 
           bins=cut(Sepal.Length, seq(floor(min(Sepal.Length)),
                                      ceiling(max(Sepal.Length)), 
                                      0.25), right=FALSE)) %>%
  summarise(count=n()) %>% 
  ungroup() %>% filter(count==max(count))

现在我们将直方图条缩放到密度图的大小。 sf是比例因子:

ggplot(iris, aes(x=Sepal.Length, sf = countMax$count/densMax$dens)) + 
  geom_histogram(fill=hcl(195,100,65), colour="grey50", binwidth=0.25) +
  geom_density(colour="red", aes(y=..density.. * sf)) +
  facet_wrap(~ Species) + 
  themer

enter image description here

或者,您可以向另一个方向前进,并将密度图缩放为直方图:

# Scale histogram bars to size of density plot
ggplot(iris, aes(x=Sepal.Length, sf = densMax$dens/countMax$count)) + 
  geom_histogram(aes(y=..count..*sf), 
                 fill=hcl(195,100,65), colour="grey50", binwidth=0.25) +
  stat_bin(aes(label=..count.., y=..count..*0.5*sf), 
           geom="text", size=4, color="white", binwidth=0.25) +
  geom_density(colour="red") +
  facet_wrap(~ Species) + 
  themer +
  labs(y="Density")

enter image description here