我试图使用NLTK工具包从Twitter对新电影进行一些情感分析。我已经关注了NLTK' movie_reviews'例如,我已经构建了自己的CategorizedPlaintextCorpusReader对象。当我致电nltk.classify.util.accuracy(classifier, testfeats)
时会出现问题。这是代码:
import os
import glob
import nltk.classify.util
from nltk.classify import NaiveBayesClassifier
from nltk.corpus import movie_reviews
def word_feats(words):
return dict([(word, True) for word in words])
negids = movie_reviews.fileids('neg')
posids = movie_reviews.fileids('pos')
negfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'neg') for f in negids]
posfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'pos') for f in posids]
trainfeats = negfeats + posfeats
# Building a custom Corpus Reader
tweets = nltk.corpus.reader.CategorizedPlaintextCorpusReader('./tweets', r'.*\.txt', cat_pattern=r'(.*)\.txt')
tweetsids = tweets.fileids()
testfeats = [(word_feats(tweets.words(fileids=[f]))) for f in tweetsids]
print 'Training the classifier'
classifier = NaiveBayesClassifier.train(trainfeats)
for tweet in tweetsids:
print tweet + ' : ' + classifier.classify(word_feats(tweets.words(tweetsids)))
classifier.show_most_informative_features()
print 'accuracy:', nltk.classify.util.accuracy(classifier, testfeats)
这一切看起来都很好,直到它到达最后一行。那是我收到错误的时候:
>>> nltk.classify.util.accuracy(classifier, testfeats)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/python2.7/dist-packages/nltk/classify/util.py", line 87, in accuracy
results = classifier.classify_many([fs for (fs,l) in gold])
ValueError: too many values to unpack
是否有人在代码中看到任何错误?
感谢。
答案 0 :(得分:1)
错误消息
File "/usr/lib/python2.7/dist-packages/nltk/classify/util.py", line 87, in accuracy
results = classifier.classify_many([fs for (fs,l) in gold])
ValueError: too many values to unpack
出现是因为gold
中的项目无法解压缩为2元组,(fs,l)
:
[fs for (fs,l) in gold] # <-- The ValueError is raised here
如果gold
等于[(1,2,3)]
,则会出现同样的错误,因为3元组(1,2,3)
无法解压缩为2元组(fs,l)
:< / p>
In [74]: [fs for (fs,l) in [(1,2)]]
Out[74]: [1]
In [73]: [fs for (fs,l) in [(1,2,3)]]
ValueError: too many values to unpack
gold
可能会被隐藏在nltk.classify.util.accuracy
的实现中,但这暗示您的输入classifier
或testfeats
是错误的&#34;形状&#34 ;
classifer,没有问题,因为调用accuracy(classifier, trainfeats)
工作原理:
In [61]: print 'accuracy:', nltk.classify.util.accuracy(classifier, trainfeats)
accuracy: 0.9675
问题必须在testfeats
。
将trainfeats
与testfeats
进行比较。
trainfeats[0]
是一个包含字典和分类的2元组:
In [63]: trainfeats[0]
Out[63]:
({u'!': True,
u'"': True,
u'&': True,
...
u'years': True,
u'you': True,
u'your': True},
'neg') # <--- Notice the classification, 'neg'
但testfeats[0]
只是一个词典,word_feats(tweets.words(fileids=[f]))
:
testfeats = [(word_feats(tweets.words(fileids=[f]))) for f in tweetsids]
因此,要解决此问题,您需要定义testfeats
,使其更像trainfeats
- word_feats
返回的每个字典必须与分类配对。