我试图在Haskell中创建一个命题逻辑模型,我需要一个函数将一些逻辑规则应用于特定的子表达式。功能"适用"获取一个列表,该列表指示树中子表达式的位置(根据左右序列),逻辑规则和逻辑表达式,并返回一个新的逻辑表达式。
data LogicExp a = P a |
True' |
False' |
Not' (LogicExp a) |
(LogicExp a) :& (LogicExp a) |
(LogicExp a) :| (LogicExp a) |
(LogicExp a) :=> (LogicExp a) |
(LogicExp a) := (LogicExp a)
deriving Show
type LExp = LogicExp String
data Position = L | R
deMorgan :: LExp -> LExp
deMorgan (e1 :& e2) = Not' ((Not e1) :| (Not e2))
deMorgan (e1 :| e2) = Not' ((Not e1) :& (Not e2))
deMorgan x = x
apply :: [Position] -> (LExp -> LExp) -> LExp -> LExp
apply [] f e = f e
apply (L:xs) f (e1 :& e2) = (apply xs f e1) :& e2
apply (R:xs) f (e1 :& e2) = e1 :& (apply xs f e2)
apply (L:xs) f (e1 :| e2) = (apply xs f e1) :| e2
apply (R:xs) f (e1 :| e2) = e1 :| (apply xs f e2)
apply (L:xs) f (e1 :=> e2) = (apply xs f e1) :=> e2
apply (R:xs) f (e1 :=> e2) = e1 :=> (apply xs f e2)
apply (L:xs) f (e1 := e2) = (apply xs f e1) := e2
apply (R:xs) f (e1 := e2) = e1 := (apply xs f e2)
apply (x:xs) f (Not' e) = apply xs f e
该功能正常。但是我可以使用一些数据构造函数" wildcard"有这样一个更简单的功能吗?
apply :: [Position] -> (LExp -> LExp) -> LExp -> LExp
apply [] f e = f e
apply (L:xs) f (e1 ?? e2) = (apply xs f e1) ?? e2
apply (R:xs) f (e1 ?? e2) = e1 ?? (apply xs f e2)
apply (x:xs) f (Not' e) = apply xs f e
答案 0 :(得分:7)
目前,我无法回想起任何花哨的技巧。但是,您可能想要做的一件事是将LogicExp
构造函数中的公共结构分解出来:
data LogicExp a
= P a
| True'
| False'
| Not' (LogicExp a)
| Bin' BinaryOp (LogicExp a) (LogicExp a)
deriving Show
data BinaryOp = And' | Or' | Impl' | Equiv'
deriving Show
apply :: [Position] -> (LExp -> LExp) -> LExp -> LExp
apply [] f e = f e
apply (L:xs) f (Bin' op e1 e2) = Bin' op (apply xs f e1) e2
apply (R:xs) f (Bin' op e1 e2) = Bin' op e1 (apply xs f e2)
apply (x:xs) f (Not' e) = apply xs f e
-- ... and the P, True' and False' cases.
通过这样做,你失去了可爱的中缀构造函数。但是,如果你真的想要它们,那就有一个奇特的技巧:view patterns(另请参阅this question了解更多示例和讨论)。
答案 1 :(得分:4)
这是使用其中一个Generics软件包的经典案例,syb或uniplate。
通常uniplate
更快,但不如syb
。幸运的是,在这种情况下,您可以使用uniplate
。
使用uniplate
的步骤:
DeriveDataTypeable
pragma。Data
和Typeable
Data.Data
以及类似Data.Generics.Uniplate.Data
您想要的转换函数只是transform
,具有相应的类型签名:
doit :: LExp -> LExp
doit = transform deMorgan
其中deMorgan
与您编写的完全相同。
完整示例:
{-# LANGUAGE DeriveDataTypeable #-}
module Lib6 where
import Data.Data
import Data.Generics.Uniplate.Data
import Text.Show.Pretty (ppShow)
data LogicExp a = P a |
True' |
False' |
Not' (LogicExp a) |
(LogicExp a) :& (LogicExp a) |
(LogicExp a) :| (LogicExp a) |
(LogicExp a) :=> (LogicExp a) |
(LogicExp a) := (LogicExp a)
deriving (Show, Data, Typeable)
type LExp = LogicExp String
data Position = L | R
deMorgan :: LExp -> LExp
deMorgan (e1 :& e2) = Not' ((Not' e1) :| (Not' e2))
deMorgan (e1 :| e2) = Not' ((Not' e1) :& (Not' e2))
deMorgan x = x
doit :: LExp -> LExp
doit = transform deMorgan
example = (P "a" :& P "b") :| (P "c")
test = putStrLn $ ppShow (doit example)
运行test
会产生:
Not' (Not' (Not' (Not' (P "a") :| Not' (P "b"))) :& Not' (P "c"))
关于uniplate的简介:
http://community.haskell.org/~ndm/darcs/uniplate/uniplate.htm