加速ddply

时间:2015-08-08 08:56:59

标签: r data.table plyr

我有data.frame这样:

n  = 50
df = data.frame(group=sample(1:as.integer(n/2),n,replace=T),
                x = runif(n),
                y = runif(n),
                z = runif(n))
df = df[with(df,order(group)),]

对于group的每个唯一值,我需要做的是生成细分,即生成新列的位置,xendyendzend ,这是该组中前一个点的xyz值。对于组中的最后一个值,结束将作为组中的第一个点。

我可以通过以下方式执行此操作:

res = ddply(df,"group",function(d){ 
  ixc  = c("x","y","z")
  dfE  = d[,ixc]
  dfE  = rbind(dfE[nrow(dfE),],dfE[1:(nrow(dfE)-1),])
  colnames(dfE) = paste0(ixc,"end")
  cbind(d,dfE)
})
print(head(res))

n较小时,这是微不足道的,但是,当n变大时,执行上述操作的时间变得非常重要,是否有更快的方法来执行此操作,可能使用{{1} }?

1 个答案:

答案 0 :(得分:6)

您可以使用data.table包中的xend功能执行此操作。 library(data.table) setDT(df)[, xend := shift(x, 1L, fill = x[.N], type = "lag"), by = group] 的一个示例:

setDT(df)[, c("xend","yend","zend") := .(shift(x, 1L, fill = x[.N], type = "lag"),
                                         shift(y, 1L, fill = y[.N], type = "lag"),
                                         shift(z, 1L, fill = z[.N], type = "lag")),
          by = group]

对于所有列:

> head(df)
   group          x         y          z       xend      yend       zend
1:     1 0.56725304 0.7539735 0.20542455 0.71538606 0.3864990 0.01586889
2:     1 0.64251519 0.1255183 0.93371528 0.56725304 0.7539735 0.20542455
3:     1 0.14182485 0.7351444 0.89199415 0.64251519 0.1255183 0.93371528
4:     1 0.06613097 0.7625182 0.92669617 0.14182485 0.7351444 0.89199415
5:     1 0.71538606 0.3864990 0.01586889 0.06613097 0.7625182 0.92669617
6:     4 0.27188921 0.5496977 0.09282217 0.27188921 0.5496977 0.09282217

这会给你:

setDT(df)[, c("xend","yend","zend") := lapply(.SD, function(x) shift(x, fill = x[.N]))
          , by = group]

@akrun在评论中提出的另一种方法:

set.seed(1)
n  = 1e5
df = data.frame(group=sample(1:as.integer(n/2),n,replace=T),
                x = runif(n),
                y = runif(n),
                z = runif(n))
df = df[with(df,order(group)),]

虽然这种方法需要较少的输入,并且在包含变量方面提供了更大的灵活性,但它也相当慢。

在问题中,您说:

  

对于组中的最后一个值,将结束视为第一个点   在小组中。

但是,根据您所描述的所需行为,对于组中的最后一个值,将使用组中的上一个值。我以为你的意思是:

  

对于组中的第一个值,将结束视为最后一个点   在小组中。

使用过的数据:

0.14.0