以编程方式解决“谁拥有斑马”?

时间:2008-11-25 21:14:27

标签: language-agnostic logic constraint-programming zebra-puzzle

编辑:这个谜题也被称为“爱因斯坦的谜语”

Who owns the Zebra(你可以try the online version here)是一组经典谜题的例子,我敢打赌Stack Overflow上的大多数人都可以用笔和纸来解决它。但是程序化解决方案会是什么样的呢?

根据下面列出的线索......

  • 有五所房子。
  • 每个房子都有自己独特的颜色。
  • 所有业主都是不同国籍。
  • 他们都有不同的宠物。
  • 他们都喝不同的饮料。
  • 他们都抽不同的香烟。
  • 英国人住在红房子里。
  • 瑞典人有一只狗。
  • 丹麦人喝茶。
  • 温室位于白宫的左侧。
  • 他们在温室里喝咖啡。
  • 抽烟Pall Mall的男人有鸟。
  • 在黄屋里他们抽烟了登喜路。
  • 在中间的房子里,他们喝牛奶。
  • 挪威人居住在第一所房子里。
  • 吸食Blend的男人和猫在房子旁边的房子里住。
  • 在他们有马的房子旁边的房子里,他们抽烟了登喜路。
  • 吸蓝师的男人喝啤酒。
  • 德国人抽烟王子。
  • 挪威人住在蓝屋旁边。
  • 他们在他们吸烟的房子旁边的房子里喝水。

......谁拥有Zebra?

14 个答案:

答案 0 :(得分:160)

这是基于约束编程的Python解决方案:

from constraint import AllDifferentConstraint, InSetConstraint, Problem

# variables
colors        = "blue red green white yellow".split()
nationalities = "Norwegian German Dane Swede English".split()
pets          = "birds dog cats horse zebra".split()
drinks        = "tea coffee milk beer water".split()
cigarettes    = "Blend, Prince, Blue Master, Dunhill, Pall Mall".split(", ")

# There are five houses.
minn, maxn = 1, 5
problem = Problem()
# value of a variable is the number of a house with corresponding property
variables = colors + nationalities + pets + drinks + cigarettes
problem.addVariables(variables, range(minn, maxn+1))

# Each house has its own unique color.
# All house owners are of different nationalities.
# They all have different pets.
# They all drink different drinks.
# They all smoke different cigarettes.
for vars_ in (colors, nationalities, pets, drinks, cigarettes):
    problem.addConstraint(AllDifferentConstraint(), vars_)

# In the middle house they drink milk.
#NOTE: interpret "middle" in a numerical sense (not geometrical)
problem.addConstraint(InSetConstraint([(minn + maxn) // 2]), ["milk"])
# The Norwegian lives in the first house.
#NOTE: interpret "the first" as a house number
problem.addConstraint(InSetConstraint([minn]), ["Norwegian"])
# The green house is on the left side of the white house.
#XXX: what is "the left side"? (linear, circular, two sides, 2D house arrangment)
#NOTE: interpret it as 'green house number' + 1 == 'white house number'
problem.addConstraint(lambda a,b: a+1 == b, ["green", "white"])

def add_constraints(constraint, statements, variables=variables, problem=problem):
    for stmt in (line for line in statements if line.strip()):
        problem.addConstraint(constraint, [v for v in variables if v in stmt])

and_statements = """
They drink coffee in the green house.
The man who smokes Pall Mall has birds.
The English man lives in the red house.
The Dane drinks tea.
In the yellow house they smoke Dunhill.
The man who smokes Blue Master drinks beer.
The German smokes Prince.
The Swede has a dog.
""".split("\n")
add_constraints(lambda a,b: a == b, and_statements)

nextto_statements = """
The man who smokes Blend lives in the house next to the house with cats.
In the house next to the house where they have a horse, they smoke Dunhill.
The Norwegian lives next to the blue house.
They drink water in the house next to the house where they smoke Blend.
""".split("\n")
#XXX: what is "next to"? (linear, circular, two sides, 2D house arrangment)
add_constraints(lambda a,b: abs(a - b) == 1, nextto_statements)

def solve(variables=variables, problem=problem):
    from itertools  import groupby
    from operator   import itemgetter

    # find & print solutions
    for solution in problem.getSolutionIter():
        for key, group in groupby(sorted(solution.iteritems(), key=itemgetter(1)), key=itemgetter(1)):
            print key, 
            for v in sorted(dict(group).keys(), key=variables.index):
                print v.ljust(9),
            print

if __name__ == '__main__':
    solve()

输出:

1 yellow    Norwegian cats      water     Dunhill  
2 blue      Dane      horse     tea       Blend    
3 red       English   birds     milk      Pall Mall
4 green     German    zebra     coffee    Prince   
5 white     Swede     dog       beer      Blue Master

找到解决方案需要0.6秒(CPU 1.5GHz) 答案是“德国人拥有斑马。”


通过pip安装constraint module:     pip install python-constraint

手动安装:

答案 1 :(得分:44)

在Prolog中,我们只需从中选择元素就可以实例化域名(为了提高效率,可以选择互斥选项)。使用SWI-Prolog,

select([A|As],S):- select(A,S,S1),select(As,S1).
select([],_). 

left_of(A,B,C):- append(_,[A,B|_],C).  
next_to(A,B,C):- left_of(A,B,C) ; left_of(B,A,C).

zebra(Owns, HS):-     % house: color,nation,pet,drink,smokes
  HS   = [ h(_,norwegian,_,_,_),    h(blue,_,_,_,_),   h(_,_,_,milk,_), _, _], 
  select([ h(red,brit,_,_,_),       h(_,swede,dog,_,_), 
           h(_,dane,_,tea,_),       h(_,german,_,_,prince)], HS),
  select([ h(_,_,birds,_,pallmall), h(yellow,_,_,_,dunhill),
           h(_,_,_,beer,bluemaster)],                        HS), 
  left_of( h(green,_,_,coffee,_),   h(white,_,_,_,_),        HS),
  next_to( h(_,_,_,_,dunhill),      h(_,_,horse,_,_),        HS),
  next_to( h(_,_,_,_,blend),        h(_,_,cats, _,_),        HS),
  next_to( h(_,_,_,_,blend),        h(_,_,_,water,_),        HS),
  member(  h(_,Owns,zebra,_,_),                              HS).

立即运行:

?- time( (zebra(Who,HS), writeln(Who), nl, maplist(writeln,HS), nl, false 
          ; writeln('no more solutions!') )).
german

h( yellow, norwegian, cats,   water,  dunhill   )
h( blue,   dane,      horse,  tea,    blend     )
h( red,    brit,      birds,  milk,   pallmall  )
h( green,  german,    zebra,  coffee, prince    )     % formatted by hand
h( white,  swede,     dog,    beer,   bluemaster)

no more solutions!
% 1,706 inferences, 0.000 CPU in 0.070 seconds (0% CPU, Infinite Lips)
true.

答案 2 :(得分:15)

一张海报已经提到过Prolog是一个潜在的解决方案。这是事实,这是我将使用的解决方案。更一般地说,这是自动推理系统的完美问题。 Prolog是一种形成这种系统的逻辑编程语言(和相关的解释器)。它基本上允许从使用First Order Logic的语句中得出结论。 FOL基本上是一种更高级的命题逻辑形式。如果您决定不想使用Prolog,则可以使用modus ponens之类的技术使用自己创建的类似系统来绘制结论。

当然,你需要添加一些关于斑马的规则,因为它在任何地方都没有提到......我相信你的目的是找出其他4只宠物,从而推断最后一只是斑马?你需要添加规则,说明斑马是宠物之一,每个房子只能有一只宠物。将这种“常识”知识引入推理系统是将该技术用作真正的AI的主要障碍。有一些研究项目,如Cyc,试图通过暴力来提供这种常识。他们已经取得了一些有趣的成功。

答案 3 :(得分:14)

SWI-Prolog兼容:

% NOTE - This may or may not be more efficent. A bit verbose, though.
left_side(L, R, [L, R, _, _, _]).
left_side(L, R, [_, L, R, _, _]).
left_side(L, R, [_, _, L, R, _]).
left_side(L, R, [_, _, _, L, R]).

next_to(X, Y, Street) :- left_side(X, Y, Street).
next_to(X, Y, Street) :- left_side(Y, X, Street).

m(X, Y) :- member(X, Y).

get_zebra(Street, Who) :- 
    Street = [[C1, N1, P1, D1, S1],
              [C2, N2, P2, D2, S2],
              [C3, N3, P3, D3, S3],
              [C4, N4, P4, D4, S4],
              [C5, N5, P5, D5, S5]],
    m([red, english, _, _, _], Street),
    m([_, swede, dog, _, _], Street),
    m([_, dane, _, tea, _], Street),
    left_side([green, _, _, _, _], [white, _, _, _, _], Street),
    m([green, _, _, coffee, _], Street),
    m([_, _, birds, _, pallmall], Street),
    m([yellow, _, _, _, dunhill], Street),
    D3 = milk,
    N1 = norwegian,
    next_to([_, _, _, _, blend], [_, _, cats, _, _], Street),
    next_to([_, _, horse, _, _], [_, _, _, _, dunhill], Street),
    m([_, _, _, beer, bluemaster], Street),
    m([_, german, _, _, prince], Street),
    next_to([_, norwegian, _, _, _], [blue, _, _, _, _], Street),
    next_to([_, _, _, water, _], [_, _, _, _, blend], Street),
    m([_, Who, zebra, _, _], Street).

在翻译处:

?- get_zebra(Street, Who).
Street = ...
Who = german

答案 4 :(得分:12)

以下是我如何去做。首先,我将生成所有有序的n元组

(housenumber, color, nationality, pet, drink, smoke)

其中5 ^ 6,15625,易于管理。然后我将过滤掉简单的布尔条件。其中有十个,你希望过滤出8/25的条件(1/25的条件包含一个带狗的瑞典人,16/25包含非瑞典人和非狗) 。当然,他们并不是独立的,但在过滤掉之后,不应该留下很多。

之后,你有一个很好的图形问题。创建一个图表,每个节点代表剩余的n元组之一。如果两端在某些n元组位置包含重复项或违反任何“位置”约束(其中有五个),则向图形添加边。从那里你几乎回家,在图表中搜索一组独立的五个节点(没有任何节点通过边连接)。如果没有太多,你可能只需要详尽地生成所有5元组的n元组,​​然后再过滤它们。

这可能是代码高尔夫的好选择。有人可以用像haskell这样的东西在一行中解决它:)

事后补充:初始过滤器传递也可以消除位置约束中的信息。不多(1/25),但仍然很重要。

答案 5 :(得分:8)

另一种Python解决方案,这次是使用Python的PyKE(Python知识引擎)。当然,它比使用Python"约束"更加冗长。 @ J.F.Sebastian解决方案中的模块,但它为任何寻找这类问题的原始知识引擎的人提供了一个有趣的比较。

<强> clues.kfb

categories( POSITION, 1, 2, 3, 4, 5 )                                   # There are five houses.
categories( HOUSE_COLOR, blue, red, green, white, yellow )              # Each house has its own unique color.
categories( NATIONALITY, Norwegian, German, Dane, Swede, English )      # All house owners are of different nationalities.
categories( PET, birds, dog, cats, horse, zebra )                       # They all have different pets.
categories( DRINK, tea, coffee, milk, beer, water )                     # They all drink different drinks.
categories( SMOKE, Blend, Prince, 'Blue Master', Dunhill, 'Pall Mall' ) # They all smoke different cigarettes.

related( NATIONALITY, English, HOUSE_COLOR, red )    # The English man lives in the red house.
related( NATIONALITY, Swede, PET, dog )              # The Swede has a dog.
related( NATIONALITY, Dane, DRINK, tea )             # The Dane drinks tea.
left_of( HOUSE_COLOR, green, HOUSE_COLOR, white )    # The green house is on the left side of the white house.
related( DRINK, coffee, HOUSE_COLOR, green )         # They drink coffee in the green house.
related( SMOKE, 'Pall Mall', PET, birds )            # The man who smokes Pall Mall has birds.
related( SMOKE, Dunhill, HOUSE_COLOR, yellow )       # In the yellow house they smoke Dunhill.
related( POSITION, 3, DRINK, milk )                  # In the middle house they drink milk.
related( NATIONALITY, Norwegian, POSITION, 1 )       # The Norwegian lives in the first house.
next_to( SMOKE, Blend, PET, cats )                   # The man who smokes Blend lives in the house next to the house with cats.
next_to( SMOKE, Dunhill, PET, horse )                # In the house next to the house where they have a horse, they smoke Dunhill.
related( SMOKE, 'Blue Master', DRINK, beer )         # The man who smokes Blue Master drinks beer.
related( NATIONALITY, German, SMOKE, Prince )        # The German smokes Prince.
next_to( NATIONALITY, Norwegian, HOUSE_COLOR, blue ) # The Norwegian lives next to the blue house.
next_to( DRINK, water, SMOKE, Blend )                # They drink water in the house next to the house where they smoke Blend.

<强> relations.krb

#############
# Categories

# Foreach set of categories, assert each type
categories
    foreach
        clues.categories($category, $thing1, $thing2, $thing3, $thing4, $thing5)
    assert
        clues.is_category($category, $thing1)
        clues.is_category($category, $thing2)
        clues.is_category($category, $thing3)
        clues.is_category($category, $thing4)
        clues.is_category($category, $thing5)


#########################
# Inverse Relationships

# Foreach A=1, assert 1=A
inverse_relationship_positive
    foreach
        clues.related($category1, $thing1, $category2, $thing2)
    assert
        clues.related($category2, $thing2, $category1, $thing1)

# Foreach A!1, assert 1!A
inverse_relationship_negative
    foreach
        clues.not_related($category1, $thing1, $category2, $thing2)
    assert
        clues.not_related($category2, $thing2, $category1, $thing1)

# Foreach "A beside B", assert "B beside A"
inverse_relationship_beside
    foreach
        clues.next_to($category1, $thing1, $category2, $thing2)
    assert
        clues.next_to($category2, $thing2, $category1, $thing1)


###########################
# Transitive Relationships

# Foreach A=1 and 1=a, assert A=a
transitive_positive
    foreach
        clues.related($category1, $thing1, $category2, $thing2)
        clues.related($category2, $thing2, $category3, $thing3)

        check unique($thing1, $thing2, $thing3) \
          and unique($category1, $category2, $category3)
    assert
        clues.related($category1, $thing1, $category3, $thing3)

# Foreach A=1 and 1!a, assert A!a
transitive_negative
    foreach
        clues.related($category1, $thing1, $category2, $thing2)
        clues.not_related($category2, $thing2, $category3, $thing3)

        check unique($thing1, $thing2, $thing3) \
          and unique($category1, $category2, $category3)
    assert
        clues.not_related($category1, $thing1, $category3, $thing3)


##########################
# Exclusive Relationships

# Foreach A=1, assert A!2 and A!3 and A!4 and A!5
if_one_related_then_others_unrelated
    foreach
        clues.related($category, $thing, $category_other, $thing_other)
        check unique($category, $category_other)

        clues.is_category($category_other, $thing_not_other)
        check unique($thing, $thing_other, $thing_not_other)
    assert
        clues.not_related($category, $thing, $category_other, $thing_not_other)

# Foreach A!1 and A!2 and A!3 and A!4, assert A=5
if_four_unrelated_then_other_is_related
    foreach
        clues.not_related($category, $thing, $category_other, $thingA)
        clues.not_related($category, $thing, $category_other, $thingB)
        check unique($thingA, $thingB)

        clues.not_related($category, $thing, $category_other, $thingC)
        check unique($thingA, $thingB, $thingC)

        clues.not_related($category, $thing, $category_other, $thingD)
        check unique($thingA, $thingB, $thingC, $thingD)

        # Find the fifth variation of category_other.
        clues.is_category($category_other, $thingE)
        check unique($thingA, $thingB, $thingC, $thingD, $thingE)
    assert
        clues.related($category, $thing, $category_other, $thingE)


###################
# Neighbors: Basic

# Foreach "A left of 1", assert "A beside 1"
expanded_relationship_beside_left
    foreach
        clues.left_of($category1, $thing1, $category2, $thing2)
    assert
        clues.next_to($category1, $thing1, $category2, $thing2)

# Foreach "A beside 1", assert A!1
unrelated_to_beside
    foreach
        clues.next_to($category1, $thing1, $category2, $thing2)
        check unique($category1, $category2)
    assert
        clues.not_related($category1, $thing1, $category2, $thing2)


###################################
# Neighbors: Spatial Relationships

# Foreach "A beside B" and "A=(at-edge)", assert "B=(near-edge)"
check_next_to_either_edge
    foreach
        clues.related(POSITION, $position_known, $category, $thing)
        check is_edge($position_known)

        clues.next_to($category, $thing, $category_other, $thing_other)

        clues.is_category(POSITION, $position_other)
        check is_beside($position_known, $position_other)
    assert
        clues.related(POSITION, $position_other, $category_other, $thing_other)

# Foreach "A beside B" and "A!(near-edge)" and "B!(near-edge)", assert "A!(at-edge)"
check_too_close_to_edge
    foreach
        clues.next_to($category, $thing, $category_other, $thing_other)

        clues.is_category(POSITION, $position_edge)
        clues.is_category(POSITION, $position_near_edge)
        check is_edge($position_edge) and is_beside($position_edge, $position_near_edge)

        clues.not_related(POSITION, $position_near_edge, $category, $thing)
        clues.not_related(POSITION, $position_near_edge, $category_other, $thing_other)
    assert
        clues.not_related(POSITION, $position_edge, $category, $thing)

# Foreach "A beside B" and "A!(one-side)", assert "A=(other-side)"
check_next_to_with_other_side_impossible
    foreach
        clues.next_to($category, $thing, $category_other, $thing_other)

        clues.related(POSITION, $position_known, $category_other, $thing_other)
        check not is_edge($position_known)

        clues.not_related($category, $thing, POSITION, $position_one_side)
        check is_beside($position_known, $position_one_side)

        clues.is_category(POSITION, $position_other_side)
        check is_beside($position_known, $position_other_side) \
          and unique($position_known, $position_one_side, $position_other_side)
    assert
        clues.related($category, $thing, POSITION, $position_other_side)

# Foreach "A left of B"...
#   ... and "C=(position1)" and "D=(position2)" and "E=(position3)"
# ~> assert "A=(other-position)" and "B=(other-position)+1"
left_of_and_only_two_slots_remaining
    foreach
        clues.left_of($category_left, $thing_left, $category_right, $thing_right)

        clues.related($category_left, $thing_left_other1, POSITION, $position1)
        clues.related($category_left, $thing_left_other2, POSITION, $position2)
        clues.related($category_left, $thing_left_other3, POSITION, $position3)
        check unique($thing_left, $thing_left_other1, $thing_left_other2, $thing_left_other3)

        clues.related($category_right, $thing_right_other1, POSITION, $position1)
        clues.related($category_right, $thing_right_other2, POSITION, $position2)
        clues.related($category_right, $thing_right_other3, POSITION, $position3)
        check unique($thing_right, $thing_right_other1, $thing_right_other2, $thing_right_other3)

        clues.is_category(POSITION, $position4)
        clues.is_category(POSITION, $position5)

        check is_left_right($position4, $position5) \
          and unique($position1, $position2, $position3, $position4, $position5)
    assert
        clues.related(POSITION, $position4, $category_left, $thing_left)
        clues.related(POSITION, $position5, $category_right, $thing_right)


#########################

fc_extras

    def unique(*args):
        return len(args) == len(set(args))

    def is_edge(pos):
        return (pos == 1) or (pos == 5)

    def is_beside(pos1, pos2):
        diff = (pos1 - pos2)
        return (diff == 1) or (diff == -1)

    def is_left_right(pos_left, pos_right):
        return (pos_right - pos_left == 1)

driver.py (实际上更大,但这是本质)

from pyke import knowledge_engine

engine = knowledge_engine.engine(__file__)
engine.activate('relations')

try:
    natl = engine.prove_1_goal('clues.related(PET, zebra, NATIONALITY, $nationality)')[0].get('nationality')
except Exception, e:
    natl = "Unknown"
print "== Who owns the zebra? %s ==" % natl

示例输出:

$ python driver.py

== Who owns the zebra? German ==

#   Color    Nationality    Pet    Drink       Smoke    
=======================================================
1   yellow   Norwegian     cats    water    Dunhill     
2   blue     Dane          horse   tea      Blend       
3   red      English       birds   milk     Pall Mall   
4   green    German        zebra   coffee   Prince      
5   white    Swede         dog     beer     Blue Master 

Calculated in 1.19 seconds.

来源:https://github.com/DreadPirateShawn/pyke-who-owns-zebra

答案 6 :(得分:7)

以下是full solution使用NSolver的摘录,发布于 Einstein’s Riddle in C#

// The green house's owner drinks coffee
Post(greenHouse.Eq(coffee));
// The person who smokes Pall Mall rears birds 
Post(pallMall.Eq(birds));
// The owner of the yellow house smokes Dunhill 
Post(yellowHouse.Eq(dunhill));

答案 7 :(得分:6)

答案 8 :(得分:6)

以下是CLP(FD)中的直接解决方案(另请参阅):

:- use_module(library(clpfd)).

solve(ZebraOwner) :-
    maplist( init_dom(1..5), 
        [[British,  Swedish,  Danish,  Norwegian, German],     % Nationalities
         [Red,      Green,    Blue,    White,     Yellow],     % Houses
         [Tea,      Coffee,   Milk,    Beer,      Water],      % Beverages
         [PallMall, Blend,    Prince,  Dunhill,   BlueMaster], % Cigarettes
         [Dog,      Birds,    Cats,    Horse,     Zebra]]),    % Pets
    British #= Red,        % Hint 1
    Swedish #= Dog,        % Hint 2
    Danish #= Tea,         % Hint 3
    Green #= White - 1 ,   % Hint 4
    Green #= Coffee,       % Hint 5
    PallMall #= Birds,     % Hint 6
    Yellow #= Dunhill,     % Hint 7
    Milk #= 3,             % Hint 8
    Norwegian #= 1,        % Hint 9
    neighbor(Blend, Cats),     % Hint 10
    neighbor(Horse, Dunhill),  % Hint 11
    BlueMaster #= Beer,        % Hint 12
    German #= Prince,          % Hint 13
    neighbor(Norwegian, Blue), % Hint 14
    neighbor(Blend, Water),    % Hint 15
    memberchk(Zebra-ZebraOwner, [British-british, Swedish-swedish, Danish-danish,
                                 Norwegian-norwegian, German-german]).

init_dom(R, L) :-
    all_distinct(L),
    L ins R.

neighbor(X, Y) :-
    (X #= (Y - 1)) #\/ (X #= (Y + 1)).

运行它,产生:

  

3? - 时间(求解(Z))。
  %111,798次推断,0.016秒内0.016 CPU(78%CPU,7166493 Lips)
  Z =德语。

答案 9 :(得分:5)

ES6(Javascript)解决方案

有很多ES6 generators和一点点lodash。您需要Babel才能运行此功能。

var _ = require('lodash');

function canBe(house, criteria) {
    for (const key of Object.keys(criteria))
        if (house[key] && house[key] !== criteria[key])
            return false;
    return true;
}

function* thereShouldBe(criteria, street) {
    for (const i of _.range(street.length))
        yield* thereShouldBeAtIndex(criteria, i, street);
}

function* thereShouldBeAtIndex(criteria, index, street) {
    if (canBe(street[index], criteria)) {
        const newStreet = _.cloneDeep(street);
        newStreet[index] = _.assign({}, street[index], criteria);
        yield newStreet;
    }
}

function* leftOf(critA, critB, street) {
    for (const i of _.range(street.length - 1)) {
        if (canBe(street[i], critA) && canBe(street[i+1], critB)) {
            const newStreet = _.cloneDeep(street);
            newStreet[i  ] = _.assign({}, street[i  ], critA);
            newStreet[i+1] = _.assign({}, street[i+1], critB);
            yield newStreet;
        }
    }
}
function* nextTo(critA, critB, street) {
    yield* leftOf(critA, critB, street);
    yield* leftOf(critB, critA, street);
}

const street = [{}, {}, {}, {}, {}]; // five houses

// Btw: it turns out we don't need uniqueness constraint.

const constraints = [
    s => thereShouldBe({nation: 'English', color: 'red'}, s),
    s => thereShouldBe({nation: 'Swede', animal: 'dog'}, s),
    s => thereShouldBe({nation: 'Dane', drink: 'tea'}, s),
    s => leftOf({color: 'green'}, {color: 'white'}, s),
    s => thereShouldBe({drink: 'coffee', color: 'green'}, s),
    s => thereShouldBe({cigarettes: 'PallMall', animal: 'birds'}, s),
    s => thereShouldBe({color: 'yellow', cigarettes: 'Dunhill'}, s),
    s => thereShouldBeAtIndex({drink: 'milk'}, 2, s),
    s => thereShouldBeAtIndex({nation: 'Norwegian'}, 0, s),
    s => nextTo({cigarettes: 'Blend'}, {animal: 'cats'}, s),
    s => nextTo({animal: 'horse'}, {cigarettes: 'Dunhill'}, s),
    s => thereShouldBe({cigarettes: 'BlueMaster', drink: 'beer'}, s),
    s => thereShouldBe({nation: 'German', cigarettes: 'Prince'}, s),
    s => nextTo({nation: 'Norwegian'}, {color: 'blue'}, s),
    s => nextTo({drink: 'water'}, {cigarettes: 'Blend'}, s),

    s => thereShouldBe({animal: 'zebra'}, s), // should be somewhere
];

function* findSolution(remainingConstraints, street) {
    if (remainingConstraints.length === 0)
        yield street;
    else
        for (const newStreet of _.head(remainingConstraints)(street))
            yield* findSolution(_.tail(remainingConstraints), newStreet);
}

for (const streetSolution of findSolution(constraints, street)) {
    console.log(streetSolution);
}

结果:

[ { color: 'yellow',
    cigarettes: 'Dunhill',
    nation: 'Norwegian',
    animal: 'cats',
    drink: 'water' },
  { nation: 'Dane',
    drink: 'tea',
    cigarettes: 'Blend',
    animal: 'horse',
    color: 'blue' },
  { nation: 'English',
    color: 'red',
    cigarettes: 'PallMall',
    animal: 'birds',
    drink: 'milk' },
  { color: 'green',
    drink: 'coffee',
    nation: 'German',
    cigarettes: 'Prince',
    animal: 'zebra' },
  { nation: 'Swede',
    animal: 'dog',
    color: 'white',
    cigarettes: 'BlueMaster',
    drink: 'beer' } ]

对我来说,运行时间大约是2.5秒,但是通过更改规则的顺序可以大大改善这一点。为了清晰起见,我决定保留原始订单。

谢谢,这是一个很酷的挑战!

答案 10 :(得分:3)

这实际上是一个约束解决问题。您可以在类似语言的逻辑编程中使用通用的约束传播来实现。我们专门针对ALE(属性逻辑引擎)系统中的Zebra问题进行了演示:

http://www.cs.toronto.edu/~gpenn/ale.html

以下是简化Zebra拼图编码的链接:

http://www.cs.toronto.edu/~gpenn/ale/files/grammars/baby.pl

有效地做到这一点是另一回事。

答案 11 :(得分:2)

以编程方式解决此类问题的最简单方法是在所有排列上使用嵌套循环,并检查结果是否满足问题中的谓词。许多谓词可以从内部循环提升到外部循环,以便大大降低计算复杂度,直到可以在合理的时间内计算答案。

这是一个简单的F#解决方案,源自F# Journal

中的文章
let rec distribute y xs =
  match xs with
  | [] -> [[y]]
  | x::xs -> (y::x::xs)::[for xs in distribute y xs -> x::xs]

let rec permute xs =
  match xs with
  | [] | [_] as xs -> [xs]
  | x::xs -> List.collect (distribute x) (permute xs)

let find xs x = List.findIndex ((=) x) xs + 1

let eq xs x ys y = find xs x = find ys y

let nextTo xs x ys y = abs(find xs x - find ys y) = 1

let nations = ["British"; "Swedish"; "Danish"; "Norwegian"; "German"]

let houses = ["Red"; "Green"; "Blue"; "White"; "Yellow"]

let drinks = ["Milk"; "Coffee"; "Water"; "Beer"; "Tea"]

let smokes = ["Blend"; "Prince"; "Blue Master"; "Dunhill"; "Pall Mall"]

let pets = ["Dog"; "Cat"; "Zebra"; "Horse"; "Bird"]

[ for nations in permute nations do
    if find nations "Norwegian" = 1 then
      for houses in permute houses do
        if eq nations "British" houses "Red" &&
           find houses "Green" = find houses "White"-1 &&
           nextTo nations "Norwegian" houses "Blue" then
          for drinks in permute drinks do
            if eq nations "Danish" drinks "Tea" &&
               eq houses "Green" drinks "Coffee" &&
               3 = find drinks "Milk" then
              for smokes in permute smokes do
                if eq houses "Yellow" smokes "Dunhill" &&
                   eq smokes "Blue Master" drinks "Beer" &&
                   eq nations "German" smokes "Prince" &&
                   nextTo smokes "Blend" drinks "Water" then
                  for pets in permute pets do
                    if eq nations "Swedish" pets "Dog" &&
                       eq smokes "Pall Mall" pets "Bird" &&
                       nextTo pets "Cat" smokes "Blend" &&
                       nextTo pets "Horse" smokes "Dunhill" then
                      yield nations, houses, drinks, smokes, pets ]

在9ms内获得的输出是:

val it :
  (string list * string list * string list * string list * string list) list =
  [(["Norwegian"; "Danish"; "British"; "German"; "Swedish"],
    ["Yellow"; "Blue"; "Red"; "Green"; "White"],
    ["Water"; "Tea"; "Milk"; "Coffee"; "Beer"],
    ["Dunhill"; "Blend"; "Pall Mall"; "Prince"; "Blue Master"],
    ["Cat"; "Horse"; "Bird"; "Zebra"; "Dog"])]

答案 12 :(得分:0)

Microsoft Solver Foundation示例来自: Walkthrough: Performing a Drag-and-Drop Operation in Windows Forms

delegate CspTerm NamedTerm(string name);

public static void Zebra() {
  ConstraintSystem S = ConstraintSystem.CreateSolver();
  var termList = new List<KeyValuePair<CspTerm, string>>();

  NamedTerm House = delegate(string name) {
    CspTerm x = S.CreateVariable(S.CreateIntegerInterval(1, 5), name);
    termList.Add(new KeyValuePair<CspTerm, string>(x, name));
    return x;
  };

  CspTerm English = House("English"), Spanish = House("Spanish"),
    Japanese = House("Japanese"), Italian = House("Italian"),
    Norwegian = House("Norwegian");
  CspTerm red = House("red"), green = House("green"),
    white = House("white"),
    blue = House("blue"), yellow = House("yellow");
  CspTerm dog = House("dog"), snails = House("snails"),
    fox = House("fox"),
    horse = House("horse"), zebra = House("zebra");
  CspTerm painter = House("painter"), sculptor = House("sculptor"),
    diplomat = House("diplomat"), violinist = House("violinist"),
    doctor = House("doctor");
  CspTerm tea = House("tea"), coffee = House("coffee"),
    milk = House("milk"),
    juice = House("juice"), water = House("water");

  S.AddConstraints(
    S.Unequal(English, Spanish, Japanese, Italian, Norwegian),
    S.Unequal(red, green, white, blue, yellow),
    S.Unequal(dog, snails, fox, horse, zebra),
    S.Unequal(painter, sculptor, diplomat, violinist, doctor),
    S.Unequal(tea, coffee, milk, juice, water),
    S.Equal(English, red),
    S.Equal(Spanish, dog),
    S.Equal(Japanese, painter),
    S.Equal(Italian, tea),
    S.Equal(1, Norwegian),
    S.Equal(green, coffee),
    S.Equal(1, green - white),
    S.Equal(sculptor, snails),
    S.Equal(diplomat, yellow),
    S.Equal(3, milk),
    S.Equal(1, S.Abs(Norwegian - blue)),
    S.Equal(violinist, juice),
    S.Equal(1, S.Abs(fox - doctor)),
    S.Equal(1, S.Abs(horse - diplomat))
  );
  bool unsolved = true;
  ConstraintSolverSolution soln = S.Solve();

  while (soln.HasFoundSolution) {
    unsolved = false;
    System.Console.WriteLine("solved.");
    StringBuilder[] houses = new StringBuilder[5];
    for (int i = 0; i < 5; i++)
      houses[i] = new StringBuilder(i.ToString());
    foreach (KeyValuePair<CspTerm, string> kvp in termList) {
      string item = kvp.Value;
      object house;
      if (!soln.TryGetValue(kvp.Key, out house))
        throw new InvalidProgramException(
                    "can't find a Term in the solution: " + item);
      houses[(int)house - 1].Append(", ");
      houses[(int)house - 1].Append(item);
    }
    foreach (StringBuilder house in houses) {
      System.Console.WriteLine(house);
    }
    soln.GetNext();
  }
  if (unsolved)
    System.Console.WriteLine("No solution found.");
  else
    System.Console.WriteLine(
"Expected: the Norwegian drinking water and the Japanese with the zebra.");
}

答案 13 :(得分:0)

这是维基百科中定义的斑马拼图的MiniZinc解决方案:

include "globals.mzn";

% Zebra puzzle
int: nc = 5;

% Colors
int: red = 1;
int: green = 2;
int: ivory = 3;
int: yellow = 4;
int: blue = 5;
array[1..nc] of var 1..nc:color;
constraint alldifferent([color[i] | i in 1..nc]);

% Nationalities
int: eng = 1;
int: spa = 2;
int: ukr = 3;
int: nor = 4;
int: jap = 5;
array[1..nc] of var 1..nc:nationality;
constraint alldifferent([nationality[i] | i in 1..nc]);

% Pets
int: dog = 1;
int: snail = 2;
int: fox = 3;
int: horse = 4;
int: zebra = 5;
array[1..nc] of var 1..nc:pet;
constraint alldifferent([pet[i] | i in 1..nc]);

% Drinks
int: coffee = 1;
int: tea = 2;
int: milk = 3;
int: orange = 4;
int: water = 5;
array[1..nc] of var 1..nc:drink;
constraint alldifferent([drink[i] | i in 1..nc]);

% Smokes
int: oldgold = 1;
int: kools = 2;
int: chesterfields = 3;
int: luckystrike = 4;
int: parliaments = 5;
array[1..nc] of var 1..nc:smoke;
constraint alldifferent([smoke[i] | i in 1..nc]);

% The Englishman lives in the red house.
constraint forall ([nationality[i] == eng <-> color[i] == red | i in 1..nc]);

% The Spaniard owns the dog.
constraint forall ([nationality[i] == spa <-> pet[i] == dog | i in 1..nc]);

% Coffee is drunk in the green house.
constraint forall ([color[i] == green <-> drink[i] == coffee | i in 1..nc]);

% The Ukrainian drinks tea.
constraint forall ([nationality[i] == ukr <-> drink[i] == tea | i in 1..nc]);

% The green house is immediately to the right of the ivory house.
constraint forall ([color[i] == ivory -> if i<nc then color[i+1] == green else false endif | i in 1..nc]);

% The Old Gold smoker owns snails.
constraint forall ([smoke[i] == oldgold <-> pet[i] == snail | i in 1..nc]);

% Kools are smoked in the yellow house.
constraint forall ([smoke[i] == kools <-> color[i] == yellow | i in 1..nc]);

% Milk is drunk in the middle house.
constraint drink[3] == milk;

% The Norwegian lives in the first house.
constraint nationality[1] == nor;

% The man who smokes Chesterfields lives in the house next to the man with the fox.
constraint forall ([smoke[i] == chesterfields -> (if i>1 then pet[i-1] == fox else false endif \/ if i<nc then pet[i+1] == fox else false endif) | i in 1..nc]);

% Kools are smoked in the house next to the house where the horse is kept.
constraint forall ([smoke[i] == kools -> (if i>1 then pet[i-1] == horse else false endif \/ if i<nc then pet[i+1] == horse else false endif)| i in 1..nc]);

%The Lucky Strike smoker drinks orange juice.
constraint forall ([smoke[i] == luckystrike <-> drink[i] == orange | i in 1..nc]);

% The Japanese smokes Parliaments.
constraint forall ([nationality[i] == jap <-> smoke[i] == parliaments | i in 1..nc]);

% The Norwegian lives next to the blue house.
constraint forall ([color[i] == blue -> (if i > 1 then nationality[i-1] == nor else false endif \/ if i<nc then nationality[i+1] == nor else false endif) | i in 1..nc]);

solve satisfy;

解决方案:

Compiling zebra.mzn
Running zebra.mzn
color = array1d(1..5 ,[4, 5, 1, 3, 2]);
nationality = array1d(1..5 ,[4, 3, 1, 2, 5]);
pet = array1d(1..5 ,[3, 4, 2, 1, 5]);
drink = array1d(1..5 ,[5, 2, 3, 4, 1]);
smoke = array1d(1..5 ,[2, 3, 1, 4, 5]);
----------
Finished in 47msec