随着时间的推移,个人缺少数据和差距

时间:2015-08-06 23:28:46

标签: r time-series data-cleaning

在一段时间内,个人可能存在或不存在的清洁数据方法。我想看看他们可能在第一时间段内存在或者在第一时间段以外的时间段内开始的个体。个人在某一点之后可能没有数据,或者数据中存在差距。数据中的差距可能没有一行NA,但可能完全从数据集中丢失。我希望能够让那些看起来像个人的人保持不变。连续几次,并且少于' n'时间间隔(或特定列名称)。

Drop variable in panel data in R conditional based on a defined number of consecutive observations

上面的问题与我的相似。但是有些时期我没有数据而不是所有的NA。这就是为什么计算NAs是不够的,我调查了时间的距离。它必须为每个组重置,并且对于不以t = 1开始的组来说很难。

set.seed(5)
data<-data.table(y=rnorm(100))
data[sample(1:100, 40),]<-NA
data1 <- data.table(id = rep(1:10, each = 10),
           time = seq(1,10),
           x  = rnorm(100),
           z = rnorm(100))
data2<-cbind(data1,data)
data2$row<-1:nrow(data2)
data2a<-subset(data2,row<55|row>62 )
data3<-data2a[-sample(nrow(data2a), 5)]
View(data3)
count(data3$id)
    x freq
1   1   10
2   2   10
3   3   10
4   4    8
5   5   10
6   6    4
7   7    7
8   8    9
9   9   10
10 10    9

如果我想要gap = 0并且每个id至少有5个观察值。然后我只会保留id 1,2,3,5,7,9,10。由于所有这些组都有gap = 0而且我也会丢弃id 6,因为它只有4个观察值。

请告诉我你在哪里学到这种方法,所以我可以按照这个来了解更多信息。

输出:

set.seed(5)
library(plyr)
data<-data.table(y=rnorm(100))
data[sample(1:100, 40),]<-NA
data1 <- data.table(id = rep(1:10, each = 10),
                time = seq(1,10),
                x  = rnorm(100),
                z = rnorm(100))
data2<-cbind(data1,data)
data2$row<-1:nrow(data2)
data2a<-subset(data2,row<55|row>62 )
data3<-data2a[-sample(nrow(data2a), 5)]
View(data3)
dt<-data.table(count(data3$id))
dt2<-subset(dt, x!=6 &x!=4)
View(dt2)
dta<-data3[data3$id %in% dt2$x,]
dt3<-subset(dta, id!=8 |time < 7)
View(dt3)
print(dt3)
  id time           x           z           y row
  1:  1    1  1.17085642  0.21083288 -0.84085548   1
  2:  1    2  0.88484486 -0.03329921          NA   2
  3:  1    3 -1.31788860  2.02519699          NA   3
  4:  1    4 -1.64325094 -0.37078675  0.07014277   4
  5:  1    5  1.05925039 -1.57823445          NA   5
  6:  1    6  0.29008358 -0.12157195          NA   6
  7:  1    7 -0.40003350 -1.79667682          NA   7
  8:  1    8  1.24309578 -0.47559154 -0.63537131   8
  9:  1    9 -1.36641052 -0.88410232 -0.28577363   9
 10:  1   10 -1.44141330 -3.49805898          NA  10
 11:  2    1  1.34854906 -0.38198337          NA  11
 12:  2    2 -1.97852834  0.97768813          NA  12
 13:  2    3 -1.24095058 -0.55804095          NA  13
 14:  2    4 -0.10403913 -0.62645515          NA  14
 15:  2    5  0.73297296 -0.53045123 -1.07176004  15
 16:  2    6  0.45567962  1.89762159 -0.13898614  16
 17:  2    7  0.28807955  1.39554068 -0.59731309  17
 18:  2    8 -1.07369091 -0.74602587          NA  18
 19:  2    9  0.64874254 -0.30557308          NA  19
 20:  2   10  0.29916228  1.16967817 -0.25935541  20
 21:  3    1 -0.79599499  0.30438718  0.90051195  21
 22:  3    2 -0.02935340 -0.11749825  0.94186939  22
 23:  3    3  2.18023570 -0.06008553  1.46796190  23
 24:  3    4  0.95741847  1.47093895          NA  24
 25:  3    5 -0.30504863 -1.47814761  0.81900893  25
 26:  3    6 -0.41840334 -0.68361295 -0.29348185  26
 27:  3    7  0.09995405  0.46054060          NA  27
 28:  3    8 -0.22980962 -0.18150193          NA  28
 29:  3    9 -1.41521488 -1.15881631 -0.65708209  29
 30:  3   10 -0.39259886  0.40901892 -0.85279544  30
 31:  5    1 -2.62134481 -1.45565758  1.55006037  41
 32:  5    2  2.24625462  0.09378492          NA  42
 33:  5    3  0.09343168  0.98234922          NA  43
 34:  5    4  1.62728009 -0.59671016          NA  44
 35:  5    5 -0.51091755  0.07480485          NA  45
 36:  5    6 -0.65938084  2.19742943  0.56222336  46
 37:  5    7 -0.04019016  0.79502321 -0.88700851  47
 38:  5    8 -0.11869400 -0.53894221 -0.46024458  48
 39:  5    9 -0.01965686 -1.60128318 -0.72432849  49
 40:  5   10 -0.48567849 -0.73137357          NA  50
 41:  7    4  0.97438263  0.96691960  0.49636154  64
 42:  7    5 -1.26447348 -0.42332730 -0.76005793  65
 43:  7    6 -0.27742142 -0.83159945 -0.34138627  66
 44:  7    7 -0.18939869  1.39995727 -2.10232912  67
 45:  7    8 -0.38402495  0.01701396          NA  68
 46:  7    9  0.74058802  1.84749695          NA  69
 47:  7   10 -1.16833839 -0.68633938 -0.27966611  70
 48:  8    1  0.66753870 -0.21872403 -0.20409732  71
 49:  8    2  0.36623695  0.68259291 -0.22561419  72
 50:  8    3 -0.51494299  0.52413002          NA  73
 51:  8    4  0.45056824  0.08054998          NA  74
 52:  8    5 -0.18772038  0.05378554          NA  75
 53:  8    6  1.33906937 -0.73725899          NA  76
 54:  9    1 -0.11367818  1.21014609          NA  81
 55:  9    2 -0.29510083  0.18865716          NA  82
 56:  9    3  0.98916847  1.96249867  0.97552910  83
 57:  9    4 -0.77513181  0.13871194          NA  84
 58:  9    5  0.27589827 -1.57862735  0.67568448  85
 59:  9    6  0.41078165 -0.79702127          NA  86
 60:  9    7  0.61118316  1.22435388  2.38723265  87
 61:  9    8  0.93657072 -0.36533356 -0.47343201  88
 62:  9    9 -0.36754170 -0.16259028 -0.07577256  89
 63:  9   10  0.74037676  0.56047918          NA  90
 64: 10    2  0.62913443  1.23863449 -1.06241117  92
 65: 10    3  0.52774631  0.76743575  0.55703387  93
 66: 10    4 -0.47225530 -1.08740911  0.90073058  94
 67: 10    5  0.82371516  0.06750377  0.98994568  95
 68: 10    6 -0.42778825  1.60514057  0.38360809  96
 69: 10    7 -0.14264393  1.23222943 -0.34658381  97
 70: 10    8  1.41878305 -0.37911379 -0.54018925  98
 71: 10    9  0.48713390 -1.34986658 -0.18255559  99
 72: 10   10  0.60344145  0.36491810          NA 100

2 个答案:

答案 0 :(得分:0)

“lapply”可能有用:

ID <- unique(data3$id)

n  <- lapply(ID, function(i){which(data3$id==i)})
tn <- lapply(n , function(i){data3$time[i]})

gapCount  <- lapply(tn, function(ti){sum(diff(ti)>1)})
maxPeriod <- lapply(tn, function(ti){max( c(ti[which(diff(ti)>1)+1],max(ti)) -
                                          c(min(ti)-1,ti[which(diff(ti)>1)])  ) } )

obsCount  <- lapply(n , length)

#------------------------------------------------------------------------
# Example 1: Remove all individuals with
#   at least one gap or
#   at most 4 observations.

keepTheseIDs_Ex1 <- which( gapCount==0 & obsCount>4 )
data_Ex1 <- data3[which(data3$id %in% keepTheseIDs_Ex1),]

#------------------------------------------------------------------------
# Example 2: Remove all individuals with
#   at most 8 observations or
#   no connected period of length at least 5

keepTheseIDs_Ex2 <- which( obsCount>8 & maxPeriod>=5 )
data_Ex2 <- data3[which(data3$id %in% keepTheseIDs_Ex2),]

对于每个人“ID [i]”

  • n [i]是行号列表,
  • tn [i]是与该个人相关联的时间列表。

如果“tn [i]”中存在间隙,即“tn [i] [j + 1] -tn [i] [j]> 1”,则“diff [tn [i]”跳转到指数“j” 通过间隙的长度加1,这是计算和收集间隙数量的方式 列表“gapCount”。

连接时段从索引“((diff(ti)&gt; 1)”开始 结束于指数“(diff(ti)> 1)+1”。所以相应时间的差异给出了 连接期间的长度。对于每个人“ID [i]”的最大长度 connected components是“maxPeriod”列表中的“i”项。

个人“ID [i]”有“obsCount [[i]]”观察。

答案 1 :(得分:0)

尝试使用dplyr包并使用此脚本:

 data3 %>% 
      data.frame() %>% # seems that with data.tables the group_by is lost after mutate
      group_by(id) %>% 
      mutate(time_lag_1 = lag(time),
             time_diff = time-time_lag_1,
             N = n()) %>%
      summarise(max_time_diff = max(time_diff, na.rm=T),
                N = unique(N)) %>%
      filter(max_time_diff == 1 &
             N >= 5)

关于它是如何工作的一点解释。

第一部分:

data3 %>% 
  data.frame() %>% 
  group_by(id) %>% 
  mutate(time_lag_1 = lag(time),
         time_diff = time-time_lag_1,
         N = n())

计算列&#34; time_lag_1&#34; (移动列&#34;时间&#34;)这样你就可以比较连续2行的时间(存储列中的差异&#34; time_diff&#34;)并计算每个&#34; id&的观察数量#34 ;.当然,你必须按照&#34; id&#34;第一:

    # id time           x           z          y row time_lag_1 time_diff  N
# 1   1    1  1.17085642  0.21083288 -0.84085548   1         NA        NA 10
# 2   1    2  0.88484486 -0.03329921          NA   2          1         1 10
# 3   1    3 -1.31788860  2.02519699          NA   3          2         1 10
# 4   1    4 -1.64325094 -0.37078675  0.07014277   4          3         1 10
# 5   1    5  1.05925039 -1.57823445          NA   5          4         1 10
# 6   1    6  0.29008358 -0.12157195          NA   6          5         1 10
# 7   1    7 -0.40003350 -1.79667682          NA   7          6         1 10
# 8   1    8  1.24309578 -0.47559154 -0.63537131   8          7         1 10
# 9   1    9 -1.36641052 -0.88410232 -0.28577363   9          8         1 10
# 10  1   10 -1.44141330 -3.49805898          NA  10          9         1 10
# 11  2    1  1.34854906 -0.38198337          NA  11         NA        NA 10
# 12  2    2 -1.97852834  0.97768813          NA  12          1         1 10
# 13  2    3 -1.24095058 -0.55804095          NA  13          2         1 10
# 14  2    4 -0.10403913 -0.62645515          NA  14          3         1 10
# 15  2    5  0.73297296 -0.53045123 -1.07176004  15          4         1 10
# 16  2    6  0.45567962  1.89762159 -0.13898614  16          5         1 10
# 17  2    7  0.28807955  1.39554068 -0.59731309  17          6         1 10
# 18  2    8 -1.07369091 -0.74602587          NA  18          7         1 10
# 19  2    9  0.64874254 -0.30557308          NA  19          8         1 10
# 20  2   10  0.29916228  1.16967817 -0.25935541  20          9         1 10
# 21  3    1 -0.79599499  0.30438718  0.90051195  21         NA        NA 10
# 22  3    2 -0.02935340 -0.11749825  0.94186939  22          1         1 10
# 23  3    3  2.18023570 -0.06008553  1.46796190  23          2         1 10
# 24  3    4  0.95741847  1.47093895          NA  24          3         1 10
# 25  3    5 -0.30504863 -1.47814761  0.81900893  25          4         1 10
# 26  3    6 -0.41840334 -0.68361295 -0.29348185  26          5         1 10
# 27  3    7  0.09995405  0.46054060          NA  27          6         1 10
# 28  3    8 -0.22980962 -0.18150193          NA  28          7         1 10
# 29  3    9 -1.41521488 -1.15881631 -0.65708209  29          8         1 10
# 30  3   10 -0.39259886  0.40901892 -0.85279544  30          9         1 10
# 31  4    1  0.94608855 -0.25820706  0.31591504  31         NA        NA  8
# 32  4    2  0.75177087 -0.26689944  1.10969417  32          1         1  8
# 33  4    4  0.80833598 -0.39345895          NA  34          2         2  8
# 34  4    5 -0.61453522 -1.84373725          NA  35          4         1  8
# 35  4    6  1.23825893 -1.54228827  0.95157383  36          5         1  8
# 36  4    7 -0.33809514 -0.58624036          NA  37          6         1  8
# 37  4    8  1.19636636 -0.85213891 -2.00047274  38          7         1  8
# 38  4    9 -0.44331838  0.77832456 -1.76218587  39          8         1  8
# 39  5    1 -2.62134481 -1.45565758  1.55006037  41         NA        NA 10
# 40  5    2  2.24625462  0.09378492          NA  42          1         1 10
# 41  5    3  0.09343168  0.98234922          NA  43          2         1 10
# 42  5    4  1.62728009 -0.59671016          NA  44          3         1 10
# 43  5    5 -0.51091755  0.07480485          NA  45          4         1 10
# 44  5    6 -0.65938084  2.19742943  0.56222336  46          5         1 10
# 45  5    7 -0.04019016  0.79502321 -0.88700851  47          6         1 10
# 46  5    8 -0.11869400 -0.53894221 -0.46024458  48          7         1 10
# 47  5    9 -0.01965686 -1.60128318 -0.72432849  49          8         1 10
# 48  5   10 -0.48567849 -0.73137357          NA  50          9         1 10
# 49  6    1 -1.44014752 -0.35574079          NA  51         NA        NA  4
# 50  6    2  0.14376888 -0.98541432  0.18772610  52          1         1  4
# 51  6    3 -1.23458665 -0.73117064  1.02202286  53          2         1  4
# 52  6    4 -1.75250121  1.46532408 -0.59183483  54          3         1  4
# 53  7    4  0.97438263  0.96691960  0.49636154  64         NA        NA  7
# 54  7    5 -1.26447348 -0.42332730 -0.76005793  65          4         1  7
# 55  7    6 -0.27742142 -0.83159945 -0.34138627  66          5         1  7
# 56  7    7 -0.18939869  1.39995727 -2.10232912  67          6         1  7
# 57  7    8 -0.38402495  0.01701396          NA  68          7         1  7
# 58  7    9  0.74058802  1.84749695          NA  69          8         1  7
# 59  7   10 -1.16833839 -0.68633938 -0.27966611  70          9         1  7
# 60  8    1  0.66753870 -0.21872403 -0.20409732  71         NA        NA  9
# 61  8    2  0.36623695  0.68259291 -0.22561419  72          1         1  9
# 62  8    3 -0.51494299  0.52413002          NA  73          2         1  9
# 63  8    4  0.45056824  0.08054998          NA  74          3         1  9
# 64  8    5 -0.18772038  0.05378554          NA  75          4         1  9
# 65  8    6  1.33906937 -0.73725899          NA  76          5         1  9
# 66  8    7  0.81621918  0.96643806  0.97348539  77          6         1  9
# 67  8    9 -0.65086272  0.18729094  0.18917369  79          7         2  9
# 68  8   10  0.72640902  0.27298575 -0.56288507  80          9         1  9
# 69  9    1 -0.11367818  1.21014609          NA  81         NA        NA 10
# 70  9    2 -0.29510083  0.18865716          NA  82          1         1 10
# 71  9    3  0.98916847  1.96249867  0.97552910  83          2         1 10
# 72  9    4 -0.77513181  0.13871194          NA  84          3         1 10
# 73  9    5  0.27589827 -1.57862735  0.67568448  85          4         1 10
# 74  9    6  0.41078165 -0.79702127          NA  86          5         1 10
# 75  9    7  0.61118316  1.22435388  2.38723265  87          6         1 10
# 76  9    8  0.93657072 -0.36533356 -0.47343201  88          7         1 10
# 77  9    9 -0.36754170 -0.16259028 -0.07577256  89          8         1 10
# 78  9   10  0.74037676  0.56047918          NA  90          9         1 10
# 79 10    2  0.62913443  1.23863449 -1.06241117  92         NA        NA  9
# 80 10    3  0.52774631  0.76743575  0.55703387  93          2         1  9
# 81 10    4 -0.47225530 -1.08740911  0.90073058  94          3         1  9
# 82 10    5  0.82371516  0.06750377  0.98994568  95          4         1  9
# 83 10    6 -0.42778825  1.60514057  0.38360809  96          5         1  9
# 84 10    7 -0.14264393  1.23222943 -0.34658381  97          6         1  9
# 85 10    8  1.41878305 -0.37911379 -0.54018925  98          7         1  9
# 86 10    9  0.48713390 -1.34986658 -0.18255559  99          8         1  9
# 87 10   10  0.60344145  0.36491810          NA 100          9         1  9

第二部分:

summarise(max_time_diff = max(time_diff, na.rm=T),
            N = unique(N))

计算连续时间之间的最大差异(这将发现您的间隙)并保持N(唯一值,因为对于特定的&#34; id&#34;,所有N都相同),对于每个&#34; ID&#34;:

# Source: local data frame [10 x 3]
# 
# id max_time_diff  N
# 1   1             1 10
# 2   2             1 10
# 3   3             1 10
# 4   4             2  8
# 5   5             1 10
# 6   6             1  4
# 7   7             1  7
# 8   8             2  9
# 9   9             1 10
# 10 10             1  9

然后最后一部分只是进行过滤,然后得到:

# Source: local data frame [7 x 3]
# 
# id max_time_diff  N
# 1  1             1 10
# 2  2             1 10
# 3  3             1 10
# 4  5             1 10
# 5  7             1  7
# 6  9             1 10
# 7 10             1  9

您可以在最后添加%>% select(id)以保留满足您的过滤条件的ID。