在一段时间内,个人可能存在或不存在的清洁数据方法。我想看看他们可能在第一时间段内存在或者在第一时间段以外的时间段内开始的个体。个人在某一点之后可能没有数据,或者数据中存在差距。数据中的差距可能没有一行NA,但可能完全从数据集中丢失。我希望能够让那些看起来像个人的人保持不变。连续几次,并且少于' n'时间间隔(或特定列名称)。
Drop variable in panel data in R conditional based on a defined number of consecutive observations
上面的问题与我的相似。但是有些时期我没有数据而不是所有的NA。这就是为什么计算NAs是不够的,我调查了时间的距离。它必须为每个组重置,并且对于不以t = 1开始的组来说很难。
set.seed(5)
data<-data.table(y=rnorm(100))
data[sample(1:100, 40),]<-NA
data1 <- data.table(id = rep(1:10, each = 10),
time = seq(1,10),
x = rnorm(100),
z = rnorm(100))
data2<-cbind(data1,data)
data2$row<-1:nrow(data2)
data2a<-subset(data2,row<55|row>62 )
data3<-data2a[-sample(nrow(data2a), 5)]
View(data3)
count(data3$id)
x freq
1 1 10
2 2 10
3 3 10
4 4 8
5 5 10
6 6 4
7 7 7
8 8 9
9 9 10
10 10 9
如果我想要gap = 0并且每个id至少有5个观察值。然后我只会保留id 1,2,3,5,7,9,10。由于所有这些组都有gap = 0而且我也会丢弃id 6,因为它只有4个观察值。
请告诉我你在哪里学到这种方法,所以我可以按照这个来了解更多信息。
输出:
set.seed(5)
library(plyr)
data<-data.table(y=rnorm(100))
data[sample(1:100, 40),]<-NA
data1 <- data.table(id = rep(1:10, each = 10),
time = seq(1,10),
x = rnorm(100),
z = rnorm(100))
data2<-cbind(data1,data)
data2$row<-1:nrow(data2)
data2a<-subset(data2,row<55|row>62 )
data3<-data2a[-sample(nrow(data2a), 5)]
View(data3)
dt<-data.table(count(data3$id))
dt2<-subset(dt, x!=6 &x!=4)
View(dt2)
dta<-data3[data3$id %in% dt2$x,]
dt3<-subset(dta, id!=8 |time < 7)
View(dt3)
print(dt3)
id time x z y row
1: 1 1 1.17085642 0.21083288 -0.84085548 1
2: 1 2 0.88484486 -0.03329921 NA 2
3: 1 3 -1.31788860 2.02519699 NA 3
4: 1 4 -1.64325094 -0.37078675 0.07014277 4
5: 1 5 1.05925039 -1.57823445 NA 5
6: 1 6 0.29008358 -0.12157195 NA 6
7: 1 7 -0.40003350 -1.79667682 NA 7
8: 1 8 1.24309578 -0.47559154 -0.63537131 8
9: 1 9 -1.36641052 -0.88410232 -0.28577363 9
10: 1 10 -1.44141330 -3.49805898 NA 10
11: 2 1 1.34854906 -0.38198337 NA 11
12: 2 2 -1.97852834 0.97768813 NA 12
13: 2 3 -1.24095058 -0.55804095 NA 13
14: 2 4 -0.10403913 -0.62645515 NA 14
15: 2 5 0.73297296 -0.53045123 -1.07176004 15
16: 2 6 0.45567962 1.89762159 -0.13898614 16
17: 2 7 0.28807955 1.39554068 -0.59731309 17
18: 2 8 -1.07369091 -0.74602587 NA 18
19: 2 9 0.64874254 -0.30557308 NA 19
20: 2 10 0.29916228 1.16967817 -0.25935541 20
21: 3 1 -0.79599499 0.30438718 0.90051195 21
22: 3 2 -0.02935340 -0.11749825 0.94186939 22
23: 3 3 2.18023570 -0.06008553 1.46796190 23
24: 3 4 0.95741847 1.47093895 NA 24
25: 3 5 -0.30504863 -1.47814761 0.81900893 25
26: 3 6 -0.41840334 -0.68361295 -0.29348185 26
27: 3 7 0.09995405 0.46054060 NA 27
28: 3 8 -0.22980962 -0.18150193 NA 28
29: 3 9 -1.41521488 -1.15881631 -0.65708209 29
30: 3 10 -0.39259886 0.40901892 -0.85279544 30
31: 5 1 -2.62134481 -1.45565758 1.55006037 41
32: 5 2 2.24625462 0.09378492 NA 42
33: 5 3 0.09343168 0.98234922 NA 43
34: 5 4 1.62728009 -0.59671016 NA 44
35: 5 5 -0.51091755 0.07480485 NA 45
36: 5 6 -0.65938084 2.19742943 0.56222336 46
37: 5 7 -0.04019016 0.79502321 -0.88700851 47
38: 5 8 -0.11869400 -0.53894221 -0.46024458 48
39: 5 9 -0.01965686 -1.60128318 -0.72432849 49
40: 5 10 -0.48567849 -0.73137357 NA 50
41: 7 4 0.97438263 0.96691960 0.49636154 64
42: 7 5 -1.26447348 -0.42332730 -0.76005793 65
43: 7 6 -0.27742142 -0.83159945 -0.34138627 66
44: 7 7 -0.18939869 1.39995727 -2.10232912 67
45: 7 8 -0.38402495 0.01701396 NA 68
46: 7 9 0.74058802 1.84749695 NA 69
47: 7 10 -1.16833839 -0.68633938 -0.27966611 70
48: 8 1 0.66753870 -0.21872403 -0.20409732 71
49: 8 2 0.36623695 0.68259291 -0.22561419 72
50: 8 3 -0.51494299 0.52413002 NA 73
51: 8 4 0.45056824 0.08054998 NA 74
52: 8 5 -0.18772038 0.05378554 NA 75
53: 8 6 1.33906937 -0.73725899 NA 76
54: 9 1 -0.11367818 1.21014609 NA 81
55: 9 2 -0.29510083 0.18865716 NA 82
56: 9 3 0.98916847 1.96249867 0.97552910 83
57: 9 4 -0.77513181 0.13871194 NA 84
58: 9 5 0.27589827 -1.57862735 0.67568448 85
59: 9 6 0.41078165 -0.79702127 NA 86
60: 9 7 0.61118316 1.22435388 2.38723265 87
61: 9 8 0.93657072 -0.36533356 -0.47343201 88
62: 9 9 -0.36754170 -0.16259028 -0.07577256 89
63: 9 10 0.74037676 0.56047918 NA 90
64: 10 2 0.62913443 1.23863449 -1.06241117 92
65: 10 3 0.52774631 0.76743575 0.55703387 93
66: 10 4 -0.47225530 -1.08740911 0.90073058 94
67: 10 5 0.82371516 0.06750377 0.98994568 95
68: 10 6 -0.42778825 1.60514057 0.38360809 96
69: 10 7 -0.14264393 1.23222943 -0.34658381 97
70: 10 8 1.41878305 -0.37911379 -0.54018925 98
71: 10 9 0.48713390 -1.34986658 -0.18255559 99
72: 10 10 0.60344145 0.36491810 NA 100
答案 0 :(得分:0)
“lapply”可能有用:
ID <- unique(data3$id)
n <- lapply(ID, function(i){which(data3$id==i)})
tn <- lapply(n , function(i){data3$time[i]})
gapCount <- lapply(tn, function(ti){sum(diff(ti)>1)})
maxPeriod <- lapply(tn, function(ti){max( c(ti[which(diff(ti)>1)+1],max(ti)) -
c(min(ti)-1,ti[which(diff(ti)>1)]) ) } )
obsCount <- lapply(n , length)
#------------------------------------------------------------------------
# Example 1: Remove all individuals with
# at least one gap or
# at most 4 observations.
keepTheseIDs_Ex1 <- which( gapCount==0 & obsCount>4 )
data_Ex1 <- data3[which(data3$id %in% keepTheseIDs_Ex1),]
#------------------------------------------------------------------------
# Example 2: Remove all individuals with
# at most 8 observations or
# no connected period of length at least 5
keepTheseIDs_Ex2 <- which( obsCount>8 & maxPeriod>=5 )
data_Ex2 <- data3[which(data3$id %in% keepTheseIDs_Ex2),]
对于每个人“ID [i]”
如果“tn [i]”中存在间隙,即“tn [i] [j + 1] -tn [i] [j]> 1”,则“diff [tn [i]”跳转到指数“j” 通过间隙的长度加1,这是计算和收集间隙数量的方式 列表“gapCount”。
连接时段从索引“((diff(ti)&gt; 1)”开始 结束于指数“(diff(ti)> 1)+1”。所以相应时间的差异给出了 连接期间的长度。对于每个人“ID [i]”的最大长度 connected components是“maxPeriod”列表中的“i”项。
个人“ID [i]”有“obsCount [[i]]”观察。
答案 1 :(得分:0)
尝试使用dplyr包并使用此脚本:
data3 %>%
data.frame() %>% # seems that with data.tables the group_by is lost after mutate
group_by(id) %>%
mutate(time_lag_1 = lag(time),
time_diff = time-time_lag_1,
N = n()) %>%
summarise(max_time_diff = max(time_diff, na.rm=T),
N = unique(N)) %>%
filter(max_time_diff == 1 &
N >= 5)
关于它是如何工作的一点解释。
第一部分:
data3 %>%
data.frame() %>%
group_by(id) %>%
mutate(time_lag_1 = lag(time),
time_diff = time-time_lag_1,
N = n())
计算列&#34; time_lag_1&#34; (移动列&#34;时间&#34;)这样你就可以比较连续2行的时间(存储列中的差异&#34; time_diff&#34;)并计算每个&#34; id&的观察数量#34 ;.当然,你必须按照&#34; id&#34;第一:
# id time x z y row time_lag_1 time_diff N
# 1 1 1 1.17085642 0.21083288 -0.84085548 1 NA NA 10
# 2 1 2 0.88484486 -0.03329921 NA 2 1 1 10
# 3 1 3 -1.31788860 2.02519699 NA 3 2 1 10
# 4 1 4 -1.64325094 -0.37078675 0.07014277 4 3 1 10
# 5 1 5 1.05925039 -1.57823445 NA 5 4 1 10
# 6 1 6 0.29008358 -0.12157195 NA 6 5 1 10
# 7 1 7 -0.40003350 -1.79667682 NA 7 6 1 10
# 8 1 8 1.24309578 -0.47559154 -0.63537131 8 7 1 10
# 9 1 9 -1.36641052 -0.88410232 -0.28577363 9 8 1 10
# 10 1 10 -1.44141330 -3.49805898 NA 10 9 1 10
# 11 2 1 1.34854906 -0.38198337 NA 11 NA NA 10
# 12 2 2 -1.97852834 0.97768813 NA 12 1 1 10
# 13 2 3 -1.24095058 -0.55804095 NA 13 2 1 10
# 14 2 4 -0.10403913 -0.62645515 NA 14 3 1 10
# 15 2 5 0.73297296 -0.53045123 -1.07176004 15 4 1 10
# 16 2 6 0.45567962 1.89762159 -0.13898614 16 5 1 10
# 17 2 7 0.28807955 1.39554068 -0.59731309 17 6 1 10
# 18 2 8 -1.07369091 -0.74602587 NA 18 7 1 10
# 19 2 9 0.64874254 -0.30557308 NA 19 8 1 10
# 20 2 10 0.29916228 1.16967817 -0.25935541 20 9 1 10
# 21 3 1 -0.79599499 0.30438718 0.90051195 21 NA NA 10
# 22 3 2 -0.02935340 -0.11749825 0.94186939 22 1 1 10
# 23 3 3 2.18023570 -0.06008553 1.46796190 23 2 1 10
# 24 3 4 0.95741847 1.47093895 NA 24 3 1 10
# 25 3 5 -0.30504863 -1.47814761 0.81900893 25 4 1 10
# 26 3 6 -0.41840334 -0.68361295 -0.29348185 26 5 1 10
# 27 3 7 0.09995405 0.46054060 NA 27 6 1 10
# 28 3 8 -0.22980962 -0.18150193 NA 28 7 1 10
# 29 3 9 -1.41521488 -1.15881631 -0.65708209 29 8 1 10
# 30 3 10 -0.39259886 0.40901892 -0.85279544 30 9 1 10
# 31 4 1 0.94608855 -0.25820706 0.31591504 31 NA NA 8
# 32 4 2 0.75177087 -0.26689944 1.10969417 32 1 1 8
# 33 4 4 0.80833598 -0.39345895 NA 34 2 2 8
# 34 4 5 -0.61453522 -1.84373725 NA 35 4 1 8
# 35 4 6 1.23825893 -1.54228827 0.95157383 36 5 1 8
# 36 4 7 -0.33809514 -0.58624036 NA 37 6 1 8
# 37 4 8 1.19636636 -0.85213891 -2.00047274 38 7 1 8
# 38 4 9 -0.44331838 0.77832456 -1.76218587 39 8 1 8
# 39 5 1 -2.62134481 -1.45565758 1.55006037 41 NA NA 10
# 40 5 2 2.24625462 0.09378492 NA 42 1 1 10
# 41 5 3 0.09343168 0.98234922 NA 43 2 1 10
# 42 5 4 1.62728009 -0.59671016 NA 44 3 1 10
# 43 5 5 -0.51091755 0.07480485 NA 45 4 1 10
# 44 5 6 -0.65938084 2.19742943 0.56222336 46 5 1 10
# 45 5 7 -0.04019016 0.79502321 -0.88700851 47 6 1 10
# 46 5 8 -0.11869400 -0.53894221 -0.46024458 48 7 1 10
# 47 5 9 -0.01965686 -1.60128318 -0.72432849 49 8 1 10
# 48 5 10 -0.48567849 -0.73137357 NA 50 9 1 10
# 49 6 1 -1.44014752 -0.35574079 NA 51 NA NA 4
# 50 6 2 0.14376888 -0.98541432 0.18772610 52 1 1 4
# 51 6 3 -1.23458665 -0.73117064 1.02202286 53 2 1 4
# 52 6 4 -1.75250121 1.46532408 -0.59183483 54 3 1 4
# 53 7 4 0.97438263 0.96691960 0.49636154 64 NA NA 7
# 54 7 5 -1.26447348 -0.42332730 -0.76005793 65 4 1 7
# 55 7 6 -0.27742142 -0.83159945 -0.34138627 66 5 1 7
# 56 7 7 -0.18939869 1.39995727 -2.10232912 67 6 1 7
# 57 7 8 -0.38402495 0.01701396 NA 68 7 1 7
# 58 7 9 0.74058802 1.84749695 NA 69 8 1 7
# 59 7 10 -1.16833839 -0.68633938 -0.27966611 70 9 1 7
# 60 8 1 0.66753870 -0.21872403 -0.20409732 71 NA NA 9
# 61 8 2 0.36623695 0.68259291 -0.22561419 72 1 1 9
# 62 8 3 -0.51494299 0.52413002 NA 73 2 1 9
# 63 8 4 0.45056824 0.08054998 NA 74 3 1 9
# 64 8 5 -0.18772038 0.05378554 NA 75 4 1 9
# 65 8 6 1.33906937 -0.73725899 NA 76 5 1 9
# 66 8 7 0.81621918 0.96643806 0.97348539 77 6 1 9
# 67 8 9 -0.65086272 0.18729094 0.18917369 79 7 2 9
# 68 8 10 0.72640902 0.27298575 -0.56288507 80 9 1 9
# 69 9 1 -0.11367818 1.21014609 NA 81 NA NA 10
# 70 9 2 -0.29510083 0.18865716 NA 82 1 1 10
# 71 9 3 0.98916847 1.96249867 0.97552910 83 2 1 10
# 72 9 4 -0.77513181 0.13871194 NA 84 3 1 10
# 73 9 5 0.27589827 -1.57862735 0.67568448 85 4 1 10
# 74 9 6 0.41078165 -0.79702127 NA 86 5 1 10
# 75 9 7 0.61118316 1.22435388 2.38723265 87 6 1 10
# 76 9 8 0.93657072 -0.36533356 -0.47343201 88 7 1 10
# 77 9 9 -0.36754170 -0.16259028 -0.07577256 89 8 1 10
# 78 9 10 0.74037676 0.56047918 NA 90 9 1 10
# 79 10 2 0.62913443 1.23863449 -1.06241117 92 NA NA 9
# 80 10 3 0.52774631 0.76743575 0.55703387 93 2 1 9
# 81 10 4 -0.47225530 -1.08740911 0.90073058 94 3 1 9
# 82 10 5 0.82371516 0.06750377 0.98994568 95 4 1 9
# 83 10 6 -0.42778825 1.60514057 0.38360809 96 5 1 9
# 84 10 7 -0.14264393 1.23222943 -0.34658381 97 6 1 9
# 85 10 8 1.41878305 -0.37911379 -0.54018925 98 7 1 9
# 86 10 9 0.48713390 -1.34986658 -0.18255559 99 8 1 9
# 87 10 10 0.60344145 0.36491810 NA 100 9 1 9
第二部分:
summarise(max_time_diff = max(time_diff, na.rm=T),
N = unique(N))
计算连续时间之间的最大差异(这将发现您的间隙)并保持N(唯一值,因为对于特定的&#34; id&#34;,所有N都相同),对于每个&#34; ID&#34;:
# Source: local data frame [10 x 3]
#
# id max_time_diff N
# 1 1 1 10
# 2 2 1 10
# 3 3 1 10
# 4 4 2 8
# 5 5 1 10
# 6 6 1 4
# 7 7 1 7
# 8 8 2 9
# 9 9 1 10
# 10 10 1 9
然后最后一部分只是进行过滤,然后得到:
# Source: local data frame [7 x 3]
#
# id max_time_diff N
# 1 1 1 10
# 2 2 1 10
# 3 3 1 10
# 4 5 1 10
# 5 7 1 7
# 6 9 1 10
# 7 10 1 9
您可以在最后添加%>% select(id)
以保留满足您的过滤条件的ID。