Pandas DataFrame:如何在行和列的范围内本地获得最小值

时间:2015-08-06 22:25:45

标签: python arrays numpy pandas dataframe

我有一个类似于此的Pandas DataFrame,但有10,000行和500列。

My Dataframe

对于每一行,我想找到3天前15:00和今天13:30之间的最小值。

是否有一些本地的numpy方式快速做到这一点? 我的目标是能够通过说出" 3天前15:00到0天前(也就是今天)13:30的最小值是什么来获得每行的最小值?&#34 ;

对于这个特定的例子,最后两行的答案是:

2011-01-09 2481.22
2011-01-10 2481.22

我目前的方式是:

1. Get the earliest row (only the values after the start time)
2. Get the middle rows 
3. Get the last row (only the values before the end time)
4. Concat (1), (2), and (3)
5. Get the minimum of (4)

但这需要很长时间才能使用大型DataFrame

以下代码将生成类似的DF:

import numpy
import pandas
import datetime

numpy.random.seed(0)

random_numbers = (numpy.random.rand(10, 8)*100 + 2000)
columns        = [datetime.time(13,0) , datetime.time(13,30), datetime.time(14,0), datetime.time(14,30) , datetime.time(15,0), datetime.time(15,30) ,datetime.time(16,0), datetime.time(16,30)] 
index          = pandas.date_range('2011/1/1', '2011/1/10')
df             = pandas.DataFrame(data = random_numbers, columns=columns, index = index).astype(int)

print df

以下是数据帧的json版本:

' {" 13:00:00" {" 12938.4亿":2085," 1293926400000":2062," 1294012800000&# 34;:2035," 1294099200000":2086," 1294185600000":2006," 12942.72亿":2097," 1294358400000":2078,& #34; 1294444800000":2055," 1294531200000":2023," 1294617600000":2024}," 13:30:00" {&#34 ; 12938.4亿":2045," 1293926400000":2039," 1294012800000":2035," 1294099200000":2045," 1294185600000&#34 ;: 2025年," 12942.72亿":2099," 1294358400000":2028," 1294444800000":2028," 1294531200000":2034," 1294617600000":2010}," 14:00:00" {" 12938.4亿":2095," 1293926400000":2006," 1294012800000&# 34;:2001,#34; 1294099200000":2032," 1294185600000":2022," 12942.72亿":2040," 1294358400000":2024,& #34; 1294444800000":2070," 1294531200000":2081," 1294617600000":2095}," 14:30:00" {&#34 ; 12938.4亿":2057," 1293 926400000":2042," 1294012800000":2018," 1294099200000":2023," 1294185600000":2025," 12942.72亿":2016 " 1294358400000":2066," 1294444800000":2041," 1294531200000":2098," 1294617600000":2023}," 15:00:00" {" 12938.4亿":2082," 1293926400000":2025," 1294012800000":2040," 1294099200000&#34 ;:2061," 1294185600000":2013," 12942.72亿":2063," 1294358400000":2024," 1294444800000":2036,&# 34; 1294531200000":2096," 1294617600000":2068}," 15:30:00" {" 12938.4亿":2090," 1293926400000":2084," 1294012800000":2092," 1294099200000":2003," 1294185600000":2001,#34; 12942.72亿":2049 " 1294358400000":2066," 1294444800000":2082," 1294531200000":2090," 1294617600000":2005}," 16:00:00" {" 12938.4亿":2081," 1293926400000":2003," 1294012800000":2009," 1294099200000 #&34;:2001,#34; 1294185600000":2011," 12942.72亿":2098," 1294358400000":2051," 1294444800000":2092 " 1294531200000":2029," 1294617600000":2073}," 16:30:00" {" 12938.4亿":2015,& #34; 1293926400000":2095," 1294012800000":2094," 1294099200000":2042," 1294185600000":2061," 12942.72亿&#34 ;:2006," 1294358400000":2042," 1294444800000":2004,#34; 1294531200000":2099," 1294617600000":2088}}& #39;

4 个答案:

答案 0 :(得分:9)

您可以先堆叠DataFrame以创建一个系列,然后根据需要对其进行索引切片并取最小值。例如:

first, last = ('2011-01-07', datetime.time(15)), ('2011-01-10', datetime.time(13, 30))
df.stack().loc[first: last].min()

df.stack的结果是SeriesMultiIndex,内层由原始列组成。然后,我们使用tuple对与开始和结束日期和时间进行切片。 如果您要进行大量此类操作,则应考虑将df.stack()分配给某个变量。然后,您可以考虑将索引更改为正确的DatetimeIndex。然后,您可以根据需要使用时间序列和网格格式。

这是另一种避免堆叠的方法,并且在实际使用的大小的DataFrame上速度要快得多(作为一次性;堆叠的DataFrame切片一旦堆叠就快得多,所以如果你你要做很多这样的操作,你应该堆叠并转换索引。) 它不太通用,因为它适用于minmax,但不适用于mean。它获取第一行和最后一行的子集的min以及其间的min行(如果有的话)并获取这三个候选者的min

first_row = df.index.get_loc(first[0])
last_row = df.index.get_loc(last[0])
if first_row == last_row:
    result = df.loc[first[0], first[1]: last[1]].min()
elif first_row < last_row:
    first_row_min = df.loc[first[0], first[1]:].min()
    last_row_min = df.loc[last[0], :last[1]].min()
    middle_min = df.iloc[first_row + 1:last_row].min().min()
    result = min(first_row_min, last_row_min, middle_min)
else: 
    raise ValueError('first row must be <= last row')

请注意,如果first_row + 1 == last_rowmiddle_minnan,但只要middle_minmin的调用中没有出现,结果仍然正确}。

答案 1 :(得分:6)

采用以下示例,它更容易理解。

|            | 13:00:00 | 13:30:00 | 14:00:00 | 14:30:00 | 15:00:00 | 15:30:00 | 16:00:00 | 16:30:00 | 
|------------|----------|----------|----------|----------|----------|----------|----------|----------| 
| 2011-01-01 | 2054     | 2071     | 2060     | 2054     | 2042     | 2064     | 2043     | 2089     | 
| 2011-01-02 | 2096     | 2038     | 2079     | 2052     | 2056     | 2092     | 2007     | 2008     | 
| 2011-01-03 | 2002     | 2083     | 2077     | 2087     | 2097     | 2079     | 2046     | 2078     | 
| 2011-01-04 | 2011     | 2063     | 2014     | 2094     | 2052     | 2041     | 2026     | 2077     | 
| 2011-01-05 | 2045     | 2056     | 2001     | 2061     | 2061     | 2061     | 2094     | 2068     | 
| 2011-01-06 | 2035     | 2043     | 2069     | 2006     | 2066     | 2067     | 2021     | 2012     | 
| 2011-01-07 | 2031     | 2036     | 2057     | 2043     | 2098     | 2010     | 2020     | 2016     | 
| 2011-01-08 | 2065     | 2025     | 2046     | 2024     | 2015     | 2011     | 2065     | 2013     | 
| 2011-01-09 | 2019     | 2036     | 2082     | 2009     | 2083     | 2009     | 2097     | 2046     | 
| 2011-01-10 | 2097     | 2060     | 2073     | 2003     | 2028     | 2012     | 2029     | 2011     | 

假设我们想要找到每行的(2,b)到(6,d)的最小值

我们可以通过np.inf填充第一行和最后一行的不需要的数据。

df.loc["2011-01-07", :datetime.time(15, 0)] = np.inf
df.loc["2011-01-10", datetime.time(13, 30):] = np.inf

你得到了

|            | 13:00:00 | 13:30:00 | 14:00:00 | 14:30:00 | 15:00:00 | 15:30:00 | 16:00:00 | 16:30:00 | 
|------------|----------|----------|----------|----------|----------|----------|----------|----------| 
| 2011-01-01 | 2054.0   | 2071.0   | 2060.0   | 2054.0   | 2042.0   | 2064.0   | 2043.0   | 2089.0   | 
| 2011-01-02 | 2096.0   | 2038.0   | 2079.0   | 2052.0   | 2056.0   | 2092.0   | 2007.0   | 2008.0   | 
| 2011-01-03 | 2002.0   | 2083.0   | 2077.0   | 2087.0   | 2097.0   | 2079.0   | 2046.0   | 2078.0   | 
| 2011-01-04 | 2011.0   | 2063.0   | 2014.0   | 2094.0   | 2052.0   | 2041.0   | 2026.0   | 2077.0   | 
| 2011-01-05 | 2045.0   | 2056.0   | 2001.0   | 2061.0   | 2061.0   | 2061.0   | 2094.0   | 2068.0   | 
| 2011-01-06 | 2035.0   | 2043.0   | 2069.0   | 2006.0   | 2066.0   | 2067.0   | 2021.0   | 2012.0   | 
| 2011-01-07 | inf      | inf      | inf      | inf      | inf      | 2010.0   | 2020.0   | 2016.0   | 
| 2011-01-08 | 2065.0   | 2025.0   | 2046.0   | 2024.0   | 2015.0   | 2011.0   | 2065.0   | 2013.0   | 
| 2011-01-09 | 2019.0   | 2036.0   | 2082.0   | 2009.0   | 2083.0   | 2009.0   | 2097.0   | 2046.0   | 
| 2011-01-10 | 2097.0   | inf      | inf      | inf      | inf      | inf      | inf      | inf      | 

为了得到结果:

df.loc["2011-01-07": "2011-01-10", :].idxmin(axis=1)

2011-01-07    15:30:00
2011-01-08    15:30:00
2011-01-09    14:30:00
2011-01-10    13:00:00
Freq: D, dtype: object

答案 2 :(得分:6)

一种hacky方式,但应该很快,就是连接移位的DataFrames:

ActiveAdmin.register Event do

并在列之间取最小值(确保丢弃在某一天过早或过晚的列:

In [11]: df.shift(1)
Out[11]:
            13:00:00  13:30:00  14:00:00  14:30:00  15:00:00  15:30:00  16:00:00  16:30:00
2011-01-01       NaN       NaN       NaN       NaN       NaN       NaN       NaN       NaN
2011-01-02      2054      2071      2060      2054      2042      2064      2043      2089
2011-01-03      2096      2038      2079      2052      2056      2092      2007      2008
2011-01-04      2002      2083      2077      2087      2097      2079      2046      2078
2011-01-05      2011      2063      2014      2094      2052      2041      2026      2077
2011-01-06      2045      2056      2001      2061      2061      2061      2094      2068
2011-01-07      2035      2043      2069      2006      2066      2067      2021      2012
2011-01-08      2031      2036      2057      2043      2098      2010      2020      2016
2011-01-09      2065      2025      2046      2024      2015      2011      2065      2013
2011-01-10      2019      2036      2082      2009      2083      2009      2097      2046

In [12]: df.shift(2).iloc[:, 4:]
Out[12]:
            15:00:00  15:30:00  16:00:00  16:30:00
2011-01-01       NaN       NaN       NaN       NaN
2011-01-02       NaN       NaN       NaN       NaN
2011-01-03      2042      2064      2043      2089
2011-01-04      2056      2092      2007      2008
2011-01-05      2097      2079      2046      2078
2011-01-06      2052      2041      2026      2077
2011-01-07      2061      2061      2094      2068
2011-01-08      2066      2067      2021      2012
2011-01-09      2098      2010      2020      2016
2011-01-10      2015      2011      2065      2013

In [13]: pd.concat([df.iloc[:, :1], df.shift(1), df.shift(2).iloc[:, 4:]], axis=1)
Out[13]:
            13:00:00  13:00:00  13:30:00  14:00:00  14:30:00  15:00:00  15:30:00  16:00:00  16:30:00  15:00:00  15:30:00  16:00:00  16:30:00
2011-01-01      2054       NaN       NaN       NaN       NaN       NaN       NaN       NaN       NaN       NaN       NaN       NaN       NaN
2011-01-02      2096      2054      2071      2060      2054      2042      2064      2043      2089       NaN       NaN       NaN       NaN
2011-01-03      2002      2096      2038      2079      2052      2056      2092      2007      2008      2042      2064      2043      2089
2011-01-04      2011      2002      2083      2077      2087      2097      2079      2046      2078      2056      2092      2007      2008
2011-01-05      2045      2011      2063      2014      2094      2052      2041      2026      2077      2097      2079      2046      2078
2011-01-06      2035      2045      2056      2001      2061      2061      2061      2094      2068      2052      2041      2026      2077
2011-01-07      2031      2035      2043      2069      2006      2066      2067      2021      2012      2061      2061      2094      2068
2011-01-08      2065      2031      2036      2057      2043      2098      2010      2020      2016      2066      2067      2021      2012
2011-01-09      2019      2065      2025      2046      2024      2015      2011      2065      2013      2098      2010      2020      2016
2011-01-10      2097      2019      2036      2082      2009      2083      2009      2097      2046      2015      2011      2065      2013

您可以通过在连接之前采用每个移位的DataFrame的最小值来更有效地执行此操作,但更嘈杂:

In [14]: pd.concat([df.iloc[:, :1], df.shift(1), df.shift(2).iloc[:, 4:]], axis=1).min(1)
Out[14]:
2011-01-01    2054
2011-01-02    2042
2011-01-03    2002
2011-01-04    2002
2011-01-05    2011
2011-01-06    2001
2011-01-07    2006
2011-01-08    2010
2011-01-09    2010
2011-01-10    2009
Freq: D, dtype: float64

要么比循环几天要快得多。

答案 3 :(得分:5)

我用过熊猫&#39; stack()方法和timeseries对象来构建样本数据的结果。这种方法通过一些调整可以很好地推广到任意时间范围,并使用内置功能的pandas来构建结果。

import pandas as pd
import datetime as dt
# import df from json
df = pd.read_json('''{"13:00:00":     {"1293840000000":2085,"1293926400000":2062,"1294012800000":2035,"1294099200000":2086,"1294185600000":2006,"1294272000000":2097,"1294358400000":2078,"1294444800000":2055,"1294531200000":2023,"1294617600000":2024},
                      "13:30:00":{"1293840000000":2045,"1293926400000":2039,"1294012800000":2035,"1294099200000":2045,"1294185600000":2025,"1294272000000":2099,"1294358400000":2028,"1294444800000":2028,"1294531200000":2034,"1294617600000":2010},
                      "14:00:00":{"1293840000000":2095,"1293926400000":2006,"1294012800000":2001,"1294099200000":2032,"1294185600000":2022,"1294272000000":2040,"1294358400000":2024,"1294444800000":2070,"1294531200000":2081,"1294617600000":2095},
                      "14:30:00":{"1293840000000":2057,"1293926400000":2042,"1294012800000":2018,"1294099200000":2023,"1294185600000":2025,"1294272000000":2016,"1294358400000":2066,"1294444800000":2041,"1294531200000":2098,"1294617600000":2023},
                      "15:00:00":{"1293840000000":2082,"1293926400000":2025,"1294012800000":2040,"1294099200000":2061,"1294185600000":2013,"1294272000000":2063,"1294358400000":2024,"1294444800000":2036,"1294531200000":2096,"1294617600000":2068},
                      "15:30:00":{"1293840000000":2090,"1293926400000":2084,"1294012800000":2092,"1294099200000":2003,"1294185600000":2001,"1294272000000":2049,"1294358400000":2066,"1294444800000":2082,"1294531200000":2090,"1294617600000":2005},
                      "16:00:00":{"1293840000000":2081,"1293926400000":2003,"1294012800000":2009,"1294099200000":2001,"1294185600000":2011,"1294272000000":2098,"1294358400000":2051,"1294444800000":2092,"1294531200000":2029,"1294617600000":2073},
                      "16:30:00":{"1293840000000":2015,"1293926400000":2095,"1294012800000":2094,"1294099200000":2042,"1294185600000":2061,"1294272000000":2006,"1294358400000":2042,"1294444800000":2004,"1294531200000":2099,"1294617600000":2088}}
                   '''#,convert_axes=False
                    )
date_idx=df.index                    
# stack the data 
stacked = df.stack()
# merge the multindex into a single idx. 
idx_list = stacked.index.tolist()
idx = []
for item in idx_list:
    day = item[0]
    time = item[1]
    idx += [dt.datetime(day.year, day.month, day.day, time.hour, time.minute)]
# make a time series to simplify slicing
timeseries = pd.TimeSeries(stacked.values, index=idx)
# get the results for each date

for i in range(2, len(date_idx)):
    # get the min values for each day in the sample data. 
    start_time='%s 15:00:00'%date_idx[i-2]
    end_time = '%s 13:30:00'%date_idx[i]
    slice_idx =timeseries.index>=start_time 
    slice_idx *= timeseries.index<=end_time
    print "%s %s"%(date_idx[i].date(), timeseries[slice_idx].min())

输出:

2011-01-03 2003
2011-01-04 2001
2011-01-05 2001
2011-01-06 2001
2011-01-07 2001
2011-01-08 2006
2011-01-09 2004
2011-01-10 2004