我试验matplotlib
来绘制数字中的数字。由于正方形是最直接的绘制,我从那些开始。最后,我想为具有一定宽度的多边形编写一个生成器。在给定的示例中,这将是一个直角和宽度为1的4角多边形。
我当前的代码绘制了以下内容,这是预期的,几乎是所希望的。
请注意,2,2
和2,3
之间有一条线,如果使用正确的算法代替当前代码,我认为可以将其删除。
上面的摘要是一个方框,装在两个方框中,振幅随1
增加,假设较大的方框后面有'其余的盒子。
我编写产生上述代码的方法实际上并不是一个函数。这是一个非常丑陋的点集合,恰好类似于空心方块。
import matplotlib.path as mpath
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
INNER_AMPLITUDE = 1.0
OUTER_AMPLITUDE = 3.0
Path_in = mpath.Path
path_in_data = [
(Path_in.MOVETO, (INNER_AMPLITUDE, -INNER_AMPLITUDE)),
(Path_in.LINETO, (-INNER_AMPLITUDE, -INNER_AMPLITUDE)),
(Path_in.LINETO, (-INNER_AMPLITUDE, INNER_AMPLITUDE)),
(Path_in.LINETO, (INNER_AMPLITUDE, INNER_AMPLITUDE)),
(Path_in.CLOSEPOLY, (INNER_AMPLITUDE, -INNER_AMPLITUDE)),
]
codes, verts = zip(*path_in_data)
path_in = mpath.Path(verts, codes)
patch_in = mpatches.PathPatch(path_in, facecolor='g', alpha=0.3)
ax.add_patch(patch_in)
x, y = zip(*path_in.vertices)
line, = ax.plot(x, y, 'go-')
Path_out = mpath.Path
path_out_data = [
(Path_out.MOVETO, (OUTER_AMPLITUDE, -OUTER_AMPLITUDE)),
(Path_out.LINETO, (-OUTER_AMPLITUDE, -OUTER_AMPLITUDE)),
(Path_out.LINETO, (-OUTER_AMPLITUDE, OUTER_AMPLITUDE)),
(Path_out.LINETO, (OUTER_AMPLITUDE, OUTER_AMPLITUDE)),
(Path_out.LINETO, (OUTER_AMPLITUDE, OUTER_AMPLITUDE-INNER_AMPLITUDE)),
(Path_out.LINETO, (-(OUTER_AMPLITUDE-INNER_AMPLITUDE), OUTER_AMPLITUDE-INNER_AMPLITUDE)),
(Path_out.LINETO, (-(OUTER_AMPLITUDE-INNER_AMPLITUDE), -(OUTER_AMPLITUDE-INNER_AMPLITUDE))),
(Path_out.LINETO, (OUTER_AMPLITUDE-INNER_AMPLITUDE, -(OUTER_AMPLITUDE-INNER_AMPLITUDE))),
(Path_out.LINETO, (OUTER_AMPLITUDE-INNER_AMPLITUDE, OUTER_AMPLITUDE-INNER_AMPLITUDE)),
(Path_out.LINETO, (OUTER_AMPLITUDE, OUTER_AMPLITUDE-INNER_AMPLITUDE)),
(Path_out.CLOSEPOLY, (OUTER_AMPLITUDE, OUTER_AMPLITUDE-INNER_AMPLITUDE)),
]
codes, verts = zip(*path_out_data)
path_out = mpath.Path(verts, codes)
patch_out = mpatches.PathPatch(path_out, facecolor='r', alpha=0.3)
ax.add_patch(patch_out)
plt.title('Square in a square in a square')
ax.grid()
ax.axis('equal')
plt.show()
请注意我认为这是Code Review的主题,因为我正在寻求扩展我的功能,而不仅仅是重写最佳实践。我觉得我完全以错误的方式做这件事。首先要做的事情。
我应该如何使用matplotlib
绘制具有一定宽度的多边形,假设多边形将在外部被包围,带有相同形状且至少相同宽度并完全填充在内部?
答案 0 :(得分:1)
纯粹在matplotlib中处理多边形可能非常繁琐。幸运的是,有一个非常好的库用于这些操作:shapely。
为了您的目的,parallel_offset
功能是可行的方法。
您感兴趣的多边形边界由ring1
,ring2
和ring3
定义:
import numpy as np
import matplotlib.pyplot as plt
import shapely.geometry as sg
from descartes.patch import PolygonPatch
# if I understood correctly you mainly need the difference d here
INNER_AMPLITUDE = 0.1
OUTER_AMPLITUDE = 0.2
d = OUTER_AMPLITUDE - INNER_AMPLITUDE
# fix seed, for reproducability
np.random.seed(11111)
# a function to produce a "random" polygon
def random_polygon():
nr_p = np.random.randint(7,15)
angle = np.sort(np.random.rand(nr_p)*2*np.pi)
dist = 0.3*np.random.rand(nr_p) + 0.5
return np.vstack((np.cos(angle)*dist, np.sin(angle)*dist)).T
# your input polygon
p = random_polygon()
# create a shapely ring object
ring1 = sg.LinearRing(p)
ring2 = ring1.parallel_offset(d, 'right', join_style=2, mitre_limit=10.)
ring3 = ring1.parallel_offset(2*d, 'right', join_style=2, mitre_limit=10.)
# revert the third ring. This is necessary to use it to procude a hole
ring3.coords = list(ring3.coords)[::-1]
# inner and outer polygon
inner_poly = sg.Polygon(ring1)
outer_poly = sg.Polygon(ring2, [ring3])
# create the figure
fig, ax = plt.subplots(1)
# convert them to matplotlib patches and add them to the axes
ax.add_patch(PolygonPatch(inner_poly, facecolor=(0,1,0,0.4),
edgecolor=(0,1,0,1), linewidth=3))
ax.add_patch(PolygonPatch(outer_poly, facecolor=(1,0,0,0.4),
edgecolor=(1,0,0,1), linewidth=3))
# cosmetics
ax.set_aspect(1)
plt.axis([-1.5, 1.5, -1.5, 1.5])
plt.grid()
plt.show()
结果: