实施日志Gabor过滤器库

时间:2015-08-02 16:35:20

标签: python image-processing computer-vision

我正在阅读这篇论文"Self-Invertible 2D Log-Gabor Wavelets",它定义了2D log gabor过滤器:

enter image description here enter image description here

本文还指出,滤波器仅覆盖频率空间的一侧,并在此图像中显示

enter image description here

在我尝试实施过滤器时,我得到的结果与论文中的内容不符。让我从实施开始,然后我将陈述问题。

实施

  1. 我创建了一个包含滤波器的二维数组,并对每个索引进行了变换,使得频域的原点位于数组的中心,正x轴向右,正y轴向上。< / p>

    number_scales = 5         # scale resolution
    number_orientations = 9   # orientation resolution
    N = constantDim           # image dimensions
    
    def getLogGaborKernal(scale, angle, logfun=math.log2, norm = True):
        # setup up filter configuration
        center_scale = logfun(N) - scale          
        center_angle = ((np.pi/number_orientations) * angle) if (scale % 2) \
                    else ((np.pi/number_orientations) * (angle+0.5))
        scale_bandwidth =  0.996 * math.sqrt(2/3)
        angle_bandwidth =  0.996 * (1/math.sqrt(2)) * (np.pi/number_orientations)
    
        # 2d array that will hold the filter
        kernel = np.zeros((N, N))
        # get the center of the 2d array so we can shift origin
        middle = math.ceil((N/2)+0.1)-1
    
        # calculate the filter
        for x in range(0,constantDim):
            for y in range(0,constantDim):
                # get the transformed x and y where origin is at center
                # and positive x-axis goes right while positive y-axis goes up
                x_t, y_t = (x-middle),-(y-middle)
                # calculate the filter value at given index
                kernel[y,x] = logGaborValue(x_t,y_t,center_scale,center_angle,
            scale_bandwidth, angle_bandwidth,logfun)
    
        # normalize the filter energy
        if norm:
            Kernel = kernel / np.sum(kernel**2)
        return kernel
    
  2. 要计算每个索引处的过滤器值,我们会转到对数极坐标空间的另一个变换

    def logGaborValue(x,y,center_scale,center_angle,scale_bandwidth,
                  angle_bandwidth, logfun):
        # transform to polar coordinates
        raw, theta = getPolar(x,y)
        # if we are at the center, return 0 as in the log space
        # zero is not defined
        if raw == 0:
            return 0
    
        # go to log polar coordinates
        raw = logfun(raw)
    
        # calculate (theta-center_theta), we calculate cos(theta-center_theta) 
        # and sin(theta-center_theta) then use atan to get the required value,
        # this way we can eliminate the angular distance wrap around problem
        costheta, sintheta = math.cos(theta), math.sin(theta)
        ds = sintheta * math.cos(center_angle) - costheta * math.sin(center_angle)    
        dc = costheta * math.cos(center_angle) + sintheta * math.sin(center_angle)  
        dtheta = math.atan2(ds,dc)
    
        # final value, multiply the radial component by the angular one
        return math.exp(-0.5 * ((raw-center_scale) / scale_bandwidth)**2) * \
                math.exp(-0.5 * (dtheta/angle_bandwidth)**2)
    
  3. 问题:

    1. 角度:论文指出,将角度从1-> 8索引会产生良好的方向覆盖,但在我的实施角度中,从1&gt; n don&# 39;覆盖除了半个方向。甚至垂直方向也未正确覆盖。这可以在该图中示出,其包含比例3的过滤器组和从1到8的取向:

      enter image description here

    2. 来自上方过滤器的覆盖率很明显,过滤器覆盖了空间的两侧,而不是纸张所说的。通过使用范围为-4->的9个取向可以使这更加明确。 4.下图包含一张图像中的所有滤镜,以显示它如何覆盖光谱的两侧(此图像是通过从所有滤镜的每个位置获取最大值来创建的):

      enter image description here

    3. 中间列(方向$ \ pi / 2 $):在方向上的第一个数字中 - >&gt; 8可以看出过滤器在方向$ \ pi / 2 $处消失。这是正常的吗?当我在一个图像中组合所有滤镜(所有5个刻度和9个方向)时,也可以看到这一点:

      enter image description here

    4. 更新 在空间域中添加滤波器的脉冲响应,正如您所看到的那样,-4&amp;中存在明显的失真。 4个方向:

      enter image description here

1 个答案:

答案 0 :(得分:5)

经过大量的代码分析后,我发现我的实现是正确的,但是getPolar函数搞砸了,所以上面的代码应该可以正常工作。如果有人在寻找它,那么这是一个没有getPolar函数的新代码:

number_scales = 5          # scale resolution
number_orientations = 8    # orientation resolution
N = 128                    # image dimensions
def getFilter(f_0, theta_0):
    # filter configuration
    scale_bandwidth =  0.996 * math.sqrt(2/3)
    angle_bandwidth =  0.996 * (1/math.sqrt(2)) * (np.pi/number_orientations)

    # x,y grid
    extent = np.arange(-N/2, N/2 + N%2)
    x, y = np.meshgrid(extent,extent)

    mid = int(N/2)
    ## orientation component ##
    theta = np.arctan2(y,x)
    center_angle = ((np.pi/number_orientations) * theta_0) if (f_0 % 2) \
                else ((np.pi/number_orientations) * (theta_0+0.5))

    # calculate (theta-center_theta), we calculate cos(theta-center_theta) 
    # and sin(theta-center_theta) then use atan to get the required value,
    # this way we can eliminate the angular distance wrap around problem
    costheta = np.cos(theta)
    sintheta = np.sin(theta)
    ds = sintheta * math.cos(center_angle) - costheta * math.sin(center_angle)    
    dc = costheta * math.cos(center_angle) + sintheta * math.sin(center_angle)  
    dtheta = np.arctan2(ds,dc)

    orientation_component =  np.exp(-0.5 * (dtheta/angle_bandwidth)**2)

    ## frequency componenet ##
    # go to polar space
    raw = np.sqrt(x**2+y**2)
    # set origin to 1 as in the log space zero is not defined
    raw[mid,mid] = 1
    # go to log space
    raw = np.log2(raw)

    center_scale = math.log2(N) - f_0
    draw = raw-center_scale
    frequency_component = np.exp(-0.5 * (draw/ scale_bandwidth)**2)

    # reset origin to zero (not needed as it is already 0?)
    frequency_component[mid,mid] = 0

    return frequency_component * orientation_component