我正在阅读这篇论文"Self-Invertible 2D Log-Gabor Wavelets",它定义了2D log gabor过滤器:
本文还指出,滤波器仅覆盖频率空间的一侧,并在此图像中显示
在我尝试实施过滤器时,我得到的结果与论文中的内容不符。让我从实施开始,然后我将陈述问题。
实施
我创建了一个包含滤波器的二维数组,并对每个索引进行了变换,使得频域的原点位于数组的中心,正x轴向右,正y轴向上。< / p>
number_scales = 5 # scale resolution
number_orientations = 9 # orientation resolution
N = constantDim # image dimensions
def getLogGaborKernal(scale, angle, logfun=math.log2, norm = True):
# setup up filter configuration
center_scale = logfun(N) - scale
center_angle = ((np.pi/number_orientations) * angle) if (scale % 2) \
else ((np.pi/number_orientations) * (angle+0.5))
scale_bandwidth = 0.996 * math.sqrt(2/3)
angle_bandwidth = 0.996 * (1/math.sqrt(2)) * (np.pi/number_orientations)
# 2d array that will hold the filter
kernel = np.zeros((N, N))
# get the center of the 2d array so we can shift origin
middle = math.ceil((N/2)+0.1)-1
# calculate the filter
for x in range(0,constantDim):
for y in range(0,constantDim):
# get the transformed x and y where origin is at center
# and positive x-axis goes right while positive y-axis goes up
x_t, y_t = (x-middle),-(y-middle)
# calculate the filter value at given index
kernel[y,x] = logGaborValue(x_t,y_t,center_scale,center_angle,
scale_bandwidth, angle_bandwidth,logfun)
# normalize the filter energy
if norm:
Kernel = kernel / np.sum(kernel**2)
return kernel
要计算每个索引处的过滤器值,我们会转到对数极坐标空间的另一个变换
def logGaborValue(x,y,center_scale,center_angle,scale_bandwidth,
angle_bandwidth, logfun):
# transform to polar coordinates
raw, theta = getPolar(x,y)
# if we are at the center, return 0 as in the log space
# zero is not defined
if raw == 0:
return 0
# go to log polar coordinates
raw = logfun(raw)
# calculate (theta-center_theta), we calculate cos(theta-center_theta)
# and sin(theta-center_theta) then use atan to get the required value,
# this way we can eliminate the angular distance wrap around problem
costheta, sintheta = math.cos(theta), math.sin(theta)
ds = sintheta * math.cos(center_angle) - costheta * math.sin(center_angle)
dc = costheta * math.cos(center_angle) + sintheta * math.sin(center_angle)
dtheta = math.atan2(ds,dc)
# final value, multiply the radial component by the angular one
return math.exp(-0.5 * ((raw-center_scale) / scale_bandwidth)**2) * \
math.exp(-0.5 * (dtheta/angle_bandwidth)**2)
问题:
角度:论文指出,将角度从1-> 8索引会产生良好的方向覆盖,但在我的实施角度中,从1&gt; n don&# 39;覆盖除了半个方向。甚至垂直方向也未正确覆盖。这可以在该图中示出,其包含比例3的过滤器组和从1到8的取向:
来自上方过滤器的覆盖率很明显,过滤器覆盖了空间的两侧,而不是纸张所说的。通过使用范围为-4->的9个取向可以使这更加明确。 4.下图包含一张图像中的所有滤镜,以显示它如何覆盖光谱的两侧(此图像是通过从所有滤镜的每个位置获取最大值来创建的):
中间列(方向$ \ pi / 2 $):在方向上的第一个数字中 - >&gt; 8可以看出过滤器在方向$ \ pi / 2 $处消失。这是正常的吗?当我在一个图像中组合所有滤镜(所有5个刻度和9个方向)时,也可以看到这一点:
更新 在空间域中添加滤波器的脉冲响应,正如您所看到的那样,-4&amp;中存在明显的失真。 4个方向:
答案 0 :(得分:5)
经过大量的代码分析后,我发现我的实现是正确的,但是getPolar
函数搞砸了,所以上面的代码应该可以正常工作。如果有人在寻找它,那么这是一个没有getPolar
函数的新代码:
number_scales = 5 # scale resolution
number_orientations = 8 # orientation resolution
N = 128 # image dimensions
def getFilter(f_0, theta_0):
# filter configuration
scale_bandwidth = 0.996 * math.sqrt(2/3)
angle_bandwidth = 0.996 * (1/math.sqrt(2)) * (np.pi/number_orientations)
# x,y grid
extent = np.arange(-N/2, N/2 + N%2)
x, y = np.meshgrid(extent,extent)
mid = int(N/2)
## orientation component ##
theta = np.arctan2(y,x)
center_angle = ((np.pi/number_orientations) * theta_0) if (f_0 % 2) \
else ((np.pi/number_orientations) * (theta_0+0.5))
# calculate (theta-center_theta), we calculate cos(theta-center_theta)
# and sin(theta-center_theta) then use atan to get the required value,
# this way we can eliminate the angular distance wrap around problem
costheta = np.cos(theta)
sintheta = np.sin(theta)
ds = sintheta * math.cos(center_angle) - costheta * math.sin(center_angle)
dc = costheta * math.cos(center_angle) + sintheta * math.sin(center_angle)
dtheta = np.arctan2(ds,dc)
orientation_component = np.exp(-0.5 * (dtheta/angle_bandwidth)**2)
## frequency componenet ##
# go to polar space
raw = np.sqrt(x**2+y**2)
# set origin to 1 as in the log space zero is not defined
raw[mid,mid] = 1
# go to log space
raw = np.log2(raw)
center_scale = math.log2(N) - f_0
draw = raw-center_scale
frequency_component = np.exp(-0.5 * (draw/ scale_bandwidth)**2)
# reset origin to zero (not needed as it is already 0?)
frequency_component[mid,mid] = 0
return frequency_component * orientation_component