我正在寻找一种简单的方法来提取(并绘制)一个因子水平的指定组合的最小二乘平均值,用于另一个因子的每个水平。
示例数据:
set.seed(1)
model.data <- data.frame(time = factor(paste0("day", rep(1:8, each = 16))),
animal = factor(rep(1:16, each = 8)),
tissue = factor(c("blood", "liver", "kidney", "brain")),
value = runif(128)
)
为因素“时间”设置自定义对比:
library("phia")
custom.contrasts <- as.data.frame(contrastCoefficients(
time ~ (day1+day2+day3)/3 - (day4+day5+day6)/3,
time ~ (day1+day2+day3)/3 - (day7+day8)/2,
time ~ (day4+day5+day6)/3 - (day7+day8)/2,
data = model.data, normalize = FALSE))
colnames(custom.contrasts) <- c("early - late",
"early - very late",
"late - very late")
custom.contrasts.lsmc <- function(...) return(custom.contrasts)
拟合模型并计算最小二乘意味着:
library("lme4")
tissue.model <- lmer(value ~ time * tissue + (1|animal), model.data)
library("lsmeans")
tissue.lsm <- lsmeans(tissue.model, custom.contrasts ~ time | tissue)
绘图:
plot(tissue.lsm$lsmeans)
dev.new()
plot(tissue.lsm$contrasts)
现在,第二个情节有我想要的组合,但它显示了组合手段之间的差异,而不是手段本身。
我可以从tissue.lsm$lsmeans
获取单独的值并自己计算合并的方法,但我有一种唠叨的感觉,有一种更简单的方法,我只是看不到。毕竟,所有数据都应该在lsmobj
。
early.mean.liver = mean(model.data$value[model.data$tissue == "liver" &
model.data$time %in% c("day1", "day2", "day3")])
late.mean.liver = mean(model.data$value[model.data$tissue == "liver" &
model.data$time %in% c("day4", "day5", "day6")])
vlate.mean.liver = mean(model.data$value[model.data$tissue == "liver" &
model.data$time %in% c("day7", "day8")])
# ... for each level of "tissue"
#compare to tissue.lsm$contrasts
early.mean.liver - late.mean.liver
early.mean.liver - vlate.mean.liver
late.mean.liver - vlate.mean.liver
我期待听到您的意见或建议。谢谢!
答案 0 :(得分:2)
另一种方法是计算感兴趣的群体平均值的对比度系数,以及您在custom_contrasts
中计算的群体差异的对比度系数。例如,您可以单独执行custom.contrasts2
。
custom.contrasts2 <- as.data.frame(contrastCoefficients(
time ~ (day1+day2+day3)/3,
time ~ (day4+day5+day6)/3,
time ~ (day7+day8)/2,
data = model.data, normalize = FALSE))
colnames(custom.contrasts2) <- c("early",
"late",
"very late")
custom.contrasts2.lsmc <- function(...) return(custom.contrasts2)
lsmeans(tissue.model, custom.contrasts2 ~ time | tissue)$contrasts
以下是liver
的输出,这是您所追求的群体意义。
...
tissue = liver:
contrast estimate SE df t.ratio p.value
early 0.4481244 0.07902715 70.4 5.671 <.0001
late 0.4618041 0.07902715 70.4 5.844 <.0001
lvery late 0.3824247 0.09678810 70.4 3.951 0.0002
如果您知道组合均值和组均值的差异,您只需添加到通过contrastCoefficients
创建的对比系数矩阵。
custom.contrasts <- as.data.frame(contrastCoefficients(
time ~ (day1+day2+day3)/3,
time ~ (day4+day5+day6)/3,
time ~ (day7+day8)/2,
time ~ (day1+day2+day3)/3 - (day4+day5+day6)/3,
time ~ (day1+day2+day3)/3 - (day7+day8)/2,
time ~ (day4+day5+day6)/3 - (day7+day8)/2,
data = model.data, normalize = FALSE))
然后相应地命名并制作.lsmc
函数。
答案 1 :(得分:0)
关注@ aosmith的例子:
custom.means <- as.data.frame(contrastCoefficients(
time ~ (day1+day2+day3)/3,
time ~ (day4+day5+day6)/3,
time ~ (day7+day8)/2,
data = model.data, normalize = FALSE))
colnames(custom.means) <- c("early",
"late",
"very late")
custom.means.lsmc <- function(...) return(custom.means)
tissue.means <- confint(lsmeans(tissue.model, custom.means ~ time | tissue)$contrasts)
library("ggplot2")
p <- ggplot(tissue.means,
aes(x = contrast, y = estimate, ymin = lower.CL, ymax = upper.CL)) +
geom_errorbar() + facet_wrap(~ tissue, ncol = 4) + xlab("time")
print(p)