我有多个线程运行相同的进程,需要能够相互通知在接下来的n秒内不应该处理某些事情,如果他们这样做的话,那就不是世界末日。
我的目标是能够将字符串和TTL传递给缓存,并能够将缓存中的所有字符串作为列表获取。缓存可以存储在内存中,TTL不会超过20秒。
有没有人对如何实现这一点有任何建议?
答案 0 :(得分:18)
答案 1 :(得分:8)
OP使用的是python 2.7,但是如果您使用的是python 3,那么接受的答案中提到的ExpiringDict
目前已经过期。对github repo的最后一次提交是2017年6月17日,doesn't work with Python 3.5
还有一个最近维护的项目cachetools(最新提交,2018年6月14日)
pip install cachetools
from cachetools import TTLCache
cache = TTLCache(maxsize=10, ttl=360)
cache['apple'] = 'top dog'
...
>>> cache['apple']
'top dog'
... after 360 seconds...
>>> cache['apple']
KeyError exception thrown
ttl
是生存时间,以秒为单位。
答案 2 :(得分:4)
对于即将到期的内存高速缓存,对于一般用途,通常这样做的常见设计模式不是通过字典,而是通过函数或方法装饰器。缓存字典在后台进行管理。因此,此答案在某种程度上补充了answer by User,后者使用字典而不是装饰器。
ttl_cache
中的cachetools==3.1.0
装饰器的工作原理与functools.lru_cache
类似,但使用的是time to live。
import cachetools.func
@cachetools.func.ttl_cache(maxsize=128, ttl=10 * 60)
def example_function(key):
return get_expensively_computed_value(key)
class ExampleClass:
EXP = 2
@classmethod
@cachetools.func.ttl_cache()
def example_classmethod(cls, i):
return i * cls.EXP
@staticmethod
@cachetools.func.ttl_cache()
def example_staticmethod(i):
return i * 3
答案 3 :(得分:3)
我绝对喜欢@iutinvg的想法,我只是想进一步介绍一下。使它不必知道通过ttl
并使其成为装饰器,从而使您不必考虑它。如果您有django
,py3
,并且不想通过pip安装任何依赖项,请尝试一下。
import time
from django.utils.functional import lazy
from functools import lru_cache, partial, update_wrapper
def lru_cache_time(seconds, maxsize=None):
"""
Adds time aware caching to lru_cache
"""
def wrapper(func):
# Lazy function that makes sure the lru_cache() invalidate after X secs
ttl_hash = lazy(lambda: round(time.time() / seconds), int)()
@lru_cache(maxsize)
def time_aware(__ttl, *args, **kwargs):
"""
Main wrapper, note that the first argument ttl is not passed down.
This is because no function should bother to know this that
this is here.
"""
def wrapping(*args, **kwargs):
return func(*args, **kwargs)
return wrapping(*args, **kwargs)
return update_wrapper(partial(time_aware, ttl_hash), func)
return wrapper
@lru_cache_time(seconds=10)
def meaning_of_life():
"""
This message should show up if you call help().
"""
print('this better only show up once!')
return 42
@lru_cache_time(seconds=10)
def mutiply(a, b):
"""
This message should show up if you call help().
"""
print('this better only show up once!')
return a * b
# This is a test, prints a `.` for every second, there should be 10s
# beween each "this better only show up once!" *2 because of the two functions.
for _ in range(20):
meaning_of_life()
mutiply(50, 99991)
print('.')
time.sleep(1)
答案 4 :(得分:2)
那样的东西?
from time import time, sleep
import itertools
from threading import Thread, RLock
import signal
class CacheEntry():
def __init__(self, string, ttl=20):
self.string = string
self.expires_at = time() + ttl
self._expired = False
def expired(self):
if self._expired is False:
return (self.expires_at < time())
else:
return self._expired
class CacheList():
def __init__(self):
self.entries = []
self.lock = RLock()
def add_entry(self, string, ttl=20):
with self.lock:
self.entries.append(CacheEntry(string, ttl))
def read_entries(self):
with self.lock:
self.entries = list(itertools.dropwhile(lambda x:x.expired(), self.entries))
return self.entries
def read_entries(name, slp, cachelist):
while True:
print "{}: {}".format(name, ",".join(map(lambda x:x.string, cachelist.read_entries())))
sleep(slp)
def add_entries(name, ttl, cachelist):
s = 'A'
while True:
cachelist.add_entry(s, ttl)
print("Added ({}): {}".format(name, s))
sleep(1)
s += 'A'
if __name__ == "__main__":
signal.signal(signal.SIGINT, signal.SIG_DFL)
cl = CacheList()
print_threads = []
print_threads.append(Thread(None, read_entries, args=('t1', 1, cl)))
# print_threads.append(Thread(None, read_entries, args=('t2', 2, cl)))
# print_threads.append(Thread(None, read_entries, args=('t3', 3, cl)))
adder_thread = Thread(None, add_entries, args=('a1', 2, cl))
adder_thread.start()
for t in print_threads:
t.start()
for t in print_threads:
t.join()
adder_thread.join()
答案 5 :(得分:2)
如果您不想使用任何第3个库,则可以在昂贵的函数中再添加一个参数:ttl_hash=None
。此新参数称为“时间敏感哈希”,其唯一目的是影响lru_cache
。
例如:
from functools import lru_cache
import time
@lru_cache()
def my_expensive_function(a, b, ttl_hash=None):
return a + b # horrible CPU load...
def get_ttl_hash(seconds=3600):
"""Return the same value withing `seconds` time period"""
return round(time.time() / seconds)
# somewhere in your code...
res = my_expensive_function(2, 2, ttl_hash=get_ttl_hash())
# cache will be updated once in an hour
答案 6 :(得分:2)
我知道这有点老了,但是对于那些对没有第三方依赖性感兴趣的人来说,这只是内置functools.lru_cache
的一个小包装(我在写完此书后注意到Javier's similar answer想我仍然发布了它,因为这不需要Django):
import functools
import time
def time_cache(max_age, maxsize=128, typed=False):
"""Least-recently-used cache decorator with time-based cache invalidation.
Args:
max_age: Time to live for cached results (in seconds).
maxsize: Maximum cache size (see `functools.lru_cache`).
typed: Cache on distinct input types (see `functools.lru_cache`).
"""
def _decorator(fn):
@functools.lru_cache(maxsize=maxsize, typed=typed)
def _new(*args, __time_salt, **kwargs):
return fn(*args, **kwargs)
@functools.wraps(fn)
def _wrapped(*args, **kwargs):
return _new(*args, **kwargs, __time_salt=int(time.time() / max_age))
return _wrapped
return _decorator
及其用法:
@time_cache(10)
def expensive(a: int):
"""An expensive function."""
time.sleep(1 + a)
print("Starting...")
expensive(1)
print("Again...")
expensive(1)
print("Done")
NB这使用time.time
并附带所有警告。如果可用/适当,您可能要使用time.monotonic
。
答案 7 :(得分:1)
如果您想避免使用第三方包,您可以添加一个自定义的 timed_lru_cache decorator,它构建在 lru_cache 装饰器之上。
下面的默认生命周期为 20 秒,最大大小为 128。请注意,整个缓存将在 20 秒后过期,而不是单个项目。
from datetime import datetime, timedelta
from functools import lru_cache, wraps
def timed_lru_cache(seconds: int = 20, maxsize: int = 128):
def wrapper_cache(func):
func = lru_cache(maxsize=maxsize)(func)
func.lifetime = timedelta(seconds=seconds)
func.expiration = datetime.utcnow() + func.lifetime
@wraps(func)
def wrapped_func(*args, **kwargs):
if datetime.utcnow() >= func.expiration:
func.cache_clear()
func.expiration = datetime.utcnow() + func.lifetime
return func(*args, **kwargs)
return wrapped_func
return wrapper_cache
然后,只需在函数上方添加 @timed_lru_cache
即可:
@timed_lru_cache
def my_function():
# code goes here...
答案 8 :(得分:0)
您还可以使用dictttl,它具有MutableMapping,OrderedDict和defaultDict(list)
初始化普通字典,每个键的ttl为30秒
data = {'a': 1, 'b': 2}
dict_ttl = DictTTL(30, data)
OrderedDict
data = {'a': 1, 'b': 2}
dict_ttl = OrderedDictTTL(30, data)
defaultDict(列表)
dict_ttl = DefaultDictTTL(30)
data = {'a': [10, 20], 'b': [1, 2]}
[dict_ttl.append_values(k, v) for k, v in data.items()]