逐个像素Bézier曲线

时间:2015-08-01 02:06:48

标签: algorithm optimization raster bezier

我通过谷歌找到的二次/立方贝塞尔曲线代码主要通过将线细分为一系列点并用直线连接它们来实现。光栅化发生在行算法中,而不是在bézier算法中。像Bresenham这样的算法逐像素地工作以栅格化一条线,并且可以进行优化(参见Po-Han Lin's solution)。

什么是二次贝塞尔曲线算法,像逐行像素算法一样逐行算法而不是绘制一系列点?

4 个答案:

答案 0 :(得分:6)

Bresenham算法的一种变体适用于圆,椭圆和抛物线等二次函数,所以它也适用于二次贝塞尔曲线。

我打算尝试实施,但之后我在网上找到了一个:http://members.chello.at/~easyfilter/bresenham.html

如果您需要更多详细信息或其他示例,上面提到的页面会链接到100页PDF,详细说明方法:http://members.chello.at/~easyfilter/Bresenham.pdf

这里是来自Alois Zingl网站的代码,用于绘制任何二次贝塞尔曲线。第一个例程在水平和垂直梯度变化时细分曲线:

void plotQuadBezier(int x0, int y0, int x1, int y1, int x2, int y2)
{ /* plot any quadratic Bezier curve */
  int x = x0-x1, y = y0-y1;
  double t = x0-2*x1+x2, r;
  if ((long)x*(x2-x1) > 0) { /* horizontal cut at P4? */
    if ((long)y*(y2-y1) > 0) /* vertical cut at P6 too? */
      if (fabs((y0-2*y1+y2)/t*x) > abs(y)) { /* which first? */
        x0 = x2; x2 = x+x1; y0 = y2; y2 = y+y1; /* swap points */
      } /* now horizontal cut at P4 comes first */
    t = (x0-x1)/t;
    r = (1-t)*((1-t)*y0+2.0*t*y1)+t*t*y2; /* By(t=P4) */
    t = (x0*x2-x1*x1)*t/(x0-x1); /* gradient dP4/dx=0 */
    x = floor(t+0.5); y = floor(r+0.5);
    r = (y1-y0)*(t-x0)/(x1-x0)+y0; /* intersect P3 | P0 P1 */
    plotQuadBezierSeg(x0,y0, x,floor(r+0.5), x,y);
    r = (y1-y2)*(t-x2)/(x1-x2)+y2; /* intersect P4 | P1 P2 */
    x0 = x1 = x; y0 = y; y1 = floor(r+0.5); /* P0 = P4, P1 = P8 */
  }
  if ((long)(y0-y1)*(y2-y1) > 0) { /* vertical cut at P6? */
    t = y0-2*y1+y2; t = (y0-y1)/t;
    r = (1-t)*((1-t)*x0+2.0*t*x1)+t*t*x2; /* Bx(t=P6) */
    t = (y0*y2-y1*y1)*t/(y0-y1); /* gradient dP6/dy=0 */
    x = floor(r+0.5); y = floor(t+0.5);
    r = (x1-x0)*(t-y0)/(y1-y0)+x0; /* intersect P6 | P0 P1 */
    plotQuadBezierSeg(x0,y0, floor(r+0.5),y, x,y);
    r = (x1-x2)*(t-y2)/(y1-y2)+x2; /* intersect P7 | P1 P2 */
    x0 = x; x1 = floor(r+0.5); y0 = y1 = y; /* P0 = P6, P1 = P7 */
  }
  plotQuadBezierSeg(x0,y0, x1,y1, x2,y2); /* remaining part */
}

第二个例程实际绘制了一个Bezier曲线段(一个没有梯度变化):

void plotQuadBezierSeg(int x0, int y0, int x1, int y1, int x2, int y2)
{ /* plot a limited quadratic Bezier segment */
  int sx = x2-x1, sy = y2-y1;
  long xx = x0-x1, yy = y0-y1, xy; /* relative values for checks */
  double dx, dy, err, cur = xx*sy-yy*sx; /* curvature */
  assert(xx*sx <= 0 && yy*sy <= 0); /* sign of gradient must not change */
  if (sx*(long)sx+sy*(long)sy > xx*xx+yy*yy) { /* begin with longer part */
    x2 = x0; x0 = sx+x1; y2 = y0; y0 = sy+y1; cur = -cur; /* swap P0 P2 */
  }
  if (cur != 0) { /* no straight line */
    xx += sx; xx *= sx = x0 < x2 ? 1 : -1; /* x step direction */
    yy += sy; yy *= sy = y0 < y2 ? 1 : -1; /* y step direction */
    xy = 2*xx*yy; xx *= xx; yy *= yy; /* differences 2nd degree */
    if (cur*sx*sy < 0) { /* negated curvature? */
      xx = -xx; yy = -yy; xy = -xy; cur = -cur;
    }
    dx = 4.0*sy*cur*(x1-x0)+xx-xy; /* differences 1st degree */
    dy = 4.0*sx*cur*(y0-y1)+yy-xy;
    xx += xx; yy += yy; err = dx+dy+xy; /* error 1st step */
    do {
      setPixel(x0,y0); /* plot curve */
      if (x0 == x2 && y0 == y2) return; /* last pixel -> curve finished */
      y1 = 2*err < dx; /* save value for test of y step */
      if (2*err > dy) { x0 += sx; dx -= xy; err += dy += yy; } /* x step */
      if ( y1 ) { y0 += sy; dy -= xy; err += dx += xx; } /* y step */
    } while (dy < 0 && dx > 0); /* gradient negates -> algorithm fails */
  }
  plotLine(x0,y0, x2,y2); /* plot remaining part to end */
}

网站上也提供抗锯齿代码。

Zingl网站对于三次贝塞尔曲线的相应函数是

void plotCubicBezier(int x0, int y0, int x1, int y1,
  int x2, int y2, int x3, int y3)
{ /* plot any cubic Bezier curve */
  int n = 0, i = 0;
  long xc = x0+x1-x2-x3, xa = xc-4*(x1-x2);
  long xb = x0-x1-x2+x3, xd = xb+4*(x1+x2);
  long yc = y0+y1-y2-y3, ya = yc-4*(y1-y2);
  long yb = y0-y1-y2+y3, yd = yb+4*(y1+y2);
  float fx0 = x0, fx1, fx2, fx3, fy0 = y0, fy1, fy2, fy3;
  double t1 = xb*xb-xa*xc, t2, t[5];
  /* sub-divide curve at gradient sign changes */
  if (xa == 0) { /* horizontal */
    if (abs(xc) < 2*abs(xb)) t[n++] = xc/(2.0*xb); /* one change */
  } else if (t1 > 0.0) { /* two changes */
    t2 = sqrt(t1);
    t1 = (xb-t2)/xa; if (fabs(t1) < 1.0) t[n++] = t1;
    t1 = (xb+t2)/xa; if (fabs(t1) < 1.0) t[n++] = t1;
  }
  t1 = yb*yb-ya*yc;
  if (ya == 0) { /* vertical */
    if (abs(yc) < 2*abs(yb)) t[n++] = yc/(2.0*yb); /* one change */
  } else if (t1 > 0.0) { /* two changes */
    t2 = sqrt(t1);
    t1 = (yb-t2)/ya; if (fabs(t1) < 1.0) t[n++] = t1;
    t1 = (yb+t2)/ya; if (fabs(t1) < 1.0) t[n++] = t1;
  }
  for (i = 1; i < n; i++) /* bubble sort of 4 points */
    if ((t1 = t[i-1]) > t[i]) { t[i-1] = t[i]; t[i] = t1; i = 0; }
    t1 = -1.0; t[n] = 1.0; /* begin / end point */
    for (i = 0; i <= n; i++) { /* plot each segment separately */
    t2 = t[i]; /* sub-divide at t[i-1], t[i] */
    fx1 = (t1*(t1*xb-2*xc)-t2*(t1*(t1*xa-2*xb)+xc)+xd)/8-fx0;
    fy1 = (t1*(t1*yb-2*yc)-t2*(t1*(t1*ya-2*yb)+yc)+yd)/8-fy0;
    fx2 = (t2*(t2*xb-2*xc)-t1*(t2*(t2*xa-2*xb)+xc)+xd)/8-fx0;
    fy2 = (t2*(t2*yb-2*yc)-t1*(t2*(t2*ya-2*yb)+yc)+yd)/8-fy0;
    fx0 -= fx3 = (t2*(t2*(3*xb-t2*xa)-3*xc)+xd)/8;
    fy0 -= fy3 = (t2*(t2*(3*yb-t2*ya)-3*yc)+yd)/8;
    x3 = floor(fx3+0.5); y3 = floor(fy3+0.5); /* scale bounds to int */
    if (fx0 != 0.0) { fx1 *= fx0 = (x0-x3)/fx0; fx2 *= fx0; }
    if (fy0 != 0.0) { fy1 *= fy0 = (y0-y3)/fy0; fy2 *= fy0; }
    if (x0 != x3 || y0 != y3) /* segment t1 - t2 */
      plotCubicBezierSeg(x0,y0, x0+fx1,y0+fy1, x0+fx2,y0+fy2, x3,y3);
    x0 = x3; y0 = y3; fx0 = fx3; fy0 = fy3; t1 = t2;
  }
}

void plotCubicBezierSeg(int x0, int y0, float x1, float y1,
  float x2, float y2, int x3, int y3)
{ /* plot limited cubic Bezier segment */
  int f, fx, fy, leg = 1;
  int sx = x0 < x3 ? 1 : -1, sy = y0 < y3 ? 1 : -1; /* step direction */
  float xc = -fabs(x0+x1-x2-x3), xa = xc-4*sx*(x1-x2), xb = sx*(x0-x1-x2+x3);
  float yc = -fabs(y0+y1-y2-y3), ya = yc-4*sy*(y1-y2), yb = sy*(y0-y1-y2+y3);
  double ab, ac, bc, cb, xx, xy, yy, dx, dy, ex, *pxy, EP = 0.01;

  /* check for curve restrains */
  /* slope P0-P1 == P2-P3 and (P0-P3 == P1-P2 or no slope change) */
  assert((x1-x0)*(x2-x3) < EP && ((x3-x0)*(x1-x2) < EP || xb*xb < xa*xc+EP));
  assert((y1-y0)*(y2-y3) < EP && ((y3-y0)*(y1-y2) < EP || yb*yb < ya*yc+EP));
  if (xa == 0 && ya == 0) { /* quadratic Bezier */
    sx = floor((3*x1-x0+1)/2); sy = floor((3*y1-y0+1)/2); /* new midpoint */
    return plotQuadBezierSeg(x0,y0, sx,sy, x3,y3);
  }
  x1 = (x1-x0)*(x1-x0)+(y1-y0)*(y1-y0)+1; /* line lengths */
  x2 = (x2-x3)*(x2-x3)+(y2-y3)*(y2-y3)+1;
  do { /* loop over both ends */
    ab = xa*yb-xb*ya; ac = xa*yc-xc*ya; bc = xb*yc-xc*yb;
    ex = ab*(ab+ac-3*bc)+ac*ac; /* P0 part of self-intersection loop? */
    f = ex > 0 ? 1 : sqrt(1+1024/x1); /* calculate resolution */
    ab *= f; ac *= f; bc *= f; ex *= f*f; /* increase resolution */
    xy = 9*(ab+ac+bc)/8; cb = 8*(xa-ya);/* init differences of 1st degree */
    dx = 27*(8*ab*(yb*yb-ya*yc)+ex*(ya+2*yb+yc))/64-ya*ya*(xy-ya);
    dy = 27*(8*ab*(xb*xb-xa*xc)-ex*(xa+2*xb+xc))/64-xa*xa*(xy+xa);
    /* init differences of 2nd degree */
    xx = 3*(3*ab*(3*yb*yb-ya*ya-2*ya*yc)-ya*(3*ac*(ya+yb)+ya*cb))/4;
    yy = 3*(3*ab*(3*xb*xb-xa*xa-2*xa*xc)-xa*(3*ac*(xa+xb)+xa*cb))/4;
    xy = xa*ya*(6*ab+6*ac-3*bc+cb); ac = ya*ya; cb = xa*xa;
    xy = 3*(xy+9*f*(cb*yb*yc-xb*xc*ac)-18*xb*yb*ab)/8;
    if (ex < 0) { /* negate values if inside self-intersection loop */
      dx = -dx; dy = -dy; xx = -xx; yy = -yy; xy = -xy; ac = -ac; cb = -cb;
    } /* init differences of 3rd degree */
    ab = 6*ya*ac; ac = -6*xa*ac; bc = 6*ya*cb; cb = -6*xa*cb;
    dx += xy; ex = dx+dy; dy += xy; /* error of 1st step */
    for (pxy = &xy, fx = fy = f; x0 != x3 && y0 != y3; ) {
      setPixel(x0,y0); /* plot curve */
      do { /* move sub-steps of one pixel */
        if (dx > *pxy || dy < *pxy) goto exit; /* confusing values */
        y1 = 2*ex-dy; /* save value for test of y step */
        if (2*ex >= dx) { /* x sub-step */
          fx--; ex += dx += xx; dy += xy += ac; yy += bc; xx += ab;
        }
        if (y1 <= 0) { /* y sub-step */
          fy--; ex += dy += yy; dx += xy += bc; xx += ac; yy += cb;
        }
      } while (fx > 0 && fy > 0); /* pixel complete? */
      if (2*fx <= f) { x0 += sx; fx += f; } /* x step */
      if (2*fy <= f) { y0 += sy; fy += f; } /* y step */
      if (pxy == &xy && dx < 0 && dy > 0) pxy = &EP;/* pixel ahead valid */
    }
    exit: xx = x0; x0 = x3; x3 = xx; sx = -sx; xb = -xb; /* swap legs */
    yy = y0; y0 = y3; y3 = yy; sy = -sy; yb = -yb; x1 = x2;
  } while (leg--); /* try other end */
  plotLine(x0,y0, x3,y3); /* remaining part in case of cusp or crunode */
}

Mike&#39; Pomax&#39; Kamermans指出,现场的立方贝塞尔曲线解决方案并不完整;特别是抗锯齿三次Bezier曲线存在问题,有理三次Bezier曲线的讨论不完整。

答案 1 :(得分:5)

您可以使用De Casteljau's algorithm将曲线细分为足够的部分,每个子部分都是一个像素。

这是在间隔T处在二次曲线上找到[x,y]点的等式:

// Given 3 control points defining the Quadratic curve 
// and given T which is an interval between 0.00 and 1.00 along the curve.
// Note:
//   At the curve's starting control point T==0.00.
//   At the curve's ending control point T==1.00.

var x = Math.pow(1-T,2)*startPt.x + 2 * (1-T) * T * controlPt.x + Math.pow(T,2) * endPt.x; 
var y = Math.pow(1-T,2)*startPt.y + 2 * (1-T) * T * controlPt.y + Math.pow(T,2) * endPt.y; 

要实际使用此公式,您可以在0.00和1.00之间输入大约1000 T值。这导致一组1000点保证沿着二次曲线。

沿曲线计算1000个点可能是过采样(某些计算点将位于相同的像素坐标处),因此您需要对1000个点进行重复数据删除,直到该集合表示沿曲线的唯一像素坐标。

enter image description here

Cubic Bezier曲线有一个类似的等式。

以下是将二次曲线绘制为一组计算像素的示例代码:

var canvas=document.getElementById("canvas");
var ctx=canvas.getContext("2d");

var points=[];
var lastX=-100;
var lastY=-100;
var startPt={x:50,y:200};
var controlPt={x:150,y:25};
var endPt={x:250,y:100};

for(var t=0;t<1000;t++){
  var xyAtT=getQuadraticBezierXYatT(startPt,controlPt,endPt,t/1000);
  var x=parseInt(xyAtT.x);
  var y=parseInt(xyAtT.y);
  if(!(x==lastX && y==lastY)){
    points.push(xyAtT);
    lastX=x;
    lastY=y;
  }
}

$('#curve').text('Quadratic Curve made up of '+points.length+' individual points');

ctx.fillStyle='red';
for(var i=0;i<points.length;i++){
  var x=points[i].x;
  var y=points[i].y;
  ctx.fillRect(x,y,1,1);
}

function getQuadraticBezierXYatT(startPt,controlPt,endPt,T) {
  var x = Math.pow(1-T,2) * startPt.x + 2 * (1-T) * T * controlPt.x + Math.pow(T,2) * endPt.x; 
  var y = Math.pow(1-T,2) * startPt.y + 2 * (1-T) * T * controlPt.y + Math.pow(T,2) * endPt.y; 
  return( {x:x,y:y} );
}
body{ background-color: ivory; }
#canvas{border:1px solid red; margin:0 auto; }
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>
<h4 id='curve'>Q</h4>
<canvas id="canvas" width=350 height=300></canvas>

答案 2 :(得分:1)

首先,我想说最快和最可靠的渲染贝塞尔曲线的方法是通过自适应细分通过折线逼近它们,然后渲染折线。使用@markE绘制在曲线上采样的许多点的方法相当快,但它可以跳过像素。在这里,我描述了另一种方法,它最接近线光栅化(虽然它很慢而且很难实现稳健)。

我会将曲线参数视为时间。这是伪代码:

  1. 将光标放在第一个控制点,找到周围的像素。
  2. 对于像素的每一边(总共四个),通过求解二次方程式检查贝塞尔曲线何时与其线相交。
  3. 在所有计算的边交叉时间中,选择将来严格发生的交叉时间,但要尽早选择。
  4. 根据哪一侧最佳,移动到相邻像素。
  5. 设置最佳边交叉点的当前时间。
  6. 从第2步开始重复。
  7. 此算法有效,直到时间参数超过1。另请注意,曲线恰好触及像素的一侧会出现严重问题。我想这可以通过特殊检查来解决。

    这是主要代码:

    double WhenEquals(double p0, double p1, double p2, double val, double minp) {
        //p0 * (1-t)^2 + p1 * 2t(1 - t) + p2 * t^2 = val
        double qa = p0 + p2 - 2 * p1;
        double qb = p1 - p0;
        double qc = p0 - val;
        assert(fabs(qa) > EPS); //singular case must be handled separately
        double qd = qb * qb - qa * qc;
        if (qd < -EPS)
            return INF;
        qd = sqrt(max(qd, 0.0));
        double t1 = (-qb - qd) / qa;
        double t2 = (-qb + qd) / qa;
        if (t2 < t1) swap(t1, t2);
        if (t1 > minp + EPS)
            return t1;
        else if (t2 > minp + EPS)
            return t2;
        return INF;
    }
    
    void DrawCurve(const Bezier &curve) {
        int cell[2];
        for (int c = 0; c < 2; c++)
            cell[c] = int(floor(curve.pts[0].a[c]));
        DrawPixel(cell[0], cell[1]);
        double param = 0.0;
        while (1) {
            int bc = -1, bs = -1;
            double bestTime = 1.0;
            for (int c = 0; c < 2; c++)
                for (int s = 0; s < 2; s++) {
                    double crit = WhenEquals(
                        curve.pts[0].a[c],
                        curve.pts[1].a[c],
                        curve.pts[2].a[c],
                        cell[c] + s, param
                    );
                    if (crit < bestTime) {
                        bestTime = crit;
                        bc = c, bs = s;
                    }
                }
            if (bc < 0)
                break;
            param = bestTime;
            cell[bc] += (2*bs - 1);
            DrawPixel(cell[0], cell[1]);
        }
    }
    

    完整代码可用here。 它使用loadbmp.h,它是here

答案 3 :(得分:1)

这里要实现的是&#34;线段&#34;,当创建得足够小时,相当于像素。贝塞尔曲线不是线性可穿越的曲线,因此我们不能轻易地跳到下一个像素&#34;只需一步,就像线条或圆弧一样。

当然,您可以在任何时候对您已经拥有的t进行切线,然后猜测下一个值t'将进一步位于一个像素。然而,通常发生的是你猜测,猜错了,因为曲线没有线性表现,然后你检查一下&#34; off&#34;你的猜测是,纠正你的猜测,然后再检查一下。重复直到你已经收敛到下一个像素:这远远慢于将曲线平坦化为大量线段,这是一个快速的操作。

如果你选择了段数,使它们适合曲线的长度,给定它渲染的显示,没有人能告诉你压扁曲线。

有一些方法可以重新参数化Bezier曲线,但它们非常昂贵,不同的规范曲线需要不同的重新参数化,因此它们也不会更快。对离散显示最有用的是为曲线构建一个LUT(查找表),其长度适用于曲线在显示器上的大小,然后使用该LUT作为绘图的基础数据,交叉口检测等等。