每个块限制的CUDA线程

时间:2015-07-30 22:27:42

标签: cuda

为什么我不能使用Max dimension size of a thread block (x,y,z): (1024, 1024, 64)的最大值?如果我使用(1024, 1024)它不起作用,当我使用(32, 32)(1, 1024)等时,它就有效。它是关于共享内存吗?

以下是来自deviceQuery的结果:

./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 3 CUDA Capable device(s)

Device 0: "Tesla M2070"
  CUDA Driver Version / Runtime Version          5.5 / 5.5
  CUDA Capability Major/Minor version number:    2.0
  Total amount of global memory:                 5375 MBytes (5636554752 bytes)
  (14) Multiprocessors, ( 32) CUDA Cores/MP:     448 CUDA Cores
  GPU Clock rate:                                1147 MHz (1.15 GHz)
  Memory Clock rate:                             1566 Mhz
  Memory Bus Width:                              384-bit
  L2 Cache Size:                                 786432 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65535), 3D=(2048, 2048, 2048)
  Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 32768
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  1536
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (65535, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 2 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Enabled
  Device supports Unified Addressing (UVA):      Yes
  Device PCI Bus ID / PCI location ID:           6 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

Device 1: "Tesla M2070"
  CUDA Driver Version / Runtime Version          5.5 / 5.5
  CUDA Capability Major/Minor version number:    2.0
  Total amount of global memory:                 5375 MBytes (5636554752 bytes)
  (14) Multiprocessors, ( 32) CUDA Cores/MP:     448 CUDA Cores
  GPU Clock rate:                                1147 MHz (1.15 GHz)
  Memory Clock rate:                             1566 Mhz
  Memory Bus Width:                              384-bit
  L2 Cache Size:                                 786432 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65535), 3D=(2048, 2048, 2048)
  Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 32768
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  1536
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (65535, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 2 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Enabled
  Device supports Unified Addressing (UVA):      Yes
  Device PCI Bus ID / PCI location ID:           20 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

Device 2: "Tesla M2070"
  CUDA Driver Version / Runtime Version          5.5 / 5.5
  CUDA Capability Major/Minor version number:    2.0
  Total amount of global memory:                 5375 MBytes (5636554752 bytes)
  (14) Multiprocessors, ( 32) CUDA Cores/MP:     448 CUDA Cores
  GPU Clock rate:                                1147 MHz (1.15 GHz)
  Memory Clock rate:                             1566 Mhz
  Memory Bus Width:                              384-bit
  L2 Cache Size:                                 786432 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65535), 3D=(2048, 2048, 2048)
  Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 32768
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  1536
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (65535, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 2 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Enabled
  Device supports Unified Addressing (UVA):      Yes
  Device PCI Bus ID / PCI location ID:           17 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
> Peer access from Tesla M2070 (GPU0) -> Tesla M2070 (GPU1) : No
> Peer access from Tesla M2070 (GPU0) -> Tesla M2070 (GPU2) : No
> Peer access from Tesla M2070 (GPU1) -> Tesla M2070 (GPU1) : No
> Peer access from Tesla M2070 (GPU1) -> Tesla M2070 (GPU2) : Yes
> Peer access from Tesla M2070 (GPU1) -> Tesla M2070 (GPU0) : No
> Peer access from Tesla M2070 (GPU1) -> Tesla M2070 (GPU1) : No
> Peer access from Tesla M2070 (GPU2) -> Tesla M2070 (GPU0) : No
> Peer access from Tesla M2070 (GPU2) -> Tesla M2070 (GPU1) : Yes

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 5.5, CUDA Runtime Version = 5.5, NumDevs = 3, Device0 = Tesla M2070, Device1 = Tesla M2070, Device2 = Tesla M2070
Result = PASS

1 个答案:

答案 0 :(得分:11)

  

为什么我不能使用线程块(x,y,z)的最大维度大小:(1024,1024,64)?

因为其中每一个都是该维度的个人限制。您的deviceQuery打印输出中还显示了一个额外的整体限制:

Maximum number of threads per block:           1024

线程块最多为3维结构,因此块中的线程总数等于您选择的各个维度的乘积。此产品还必须小于或等于1024(并且大于0)。这只是设备的另一个硬件限制。

  

是关于共享内存吗?

以上与共享内存的任何使用无关。 (无论如何,您的代码似乎没有使用共享内存。)