嵌套循环遍历r

时间:2015-07-30 21:04:34

标签: r

我有一个如下所示的数据集:

1. ID   RESULT_DATE Hyperkalemia    Is.Hemolyzed
2. 1    5/27/2008   2   FALSE
3. 1    5/28/2008   2   FALSE
4. 1    5/29/2008   2   FALSE
5. 1    5/29/2008   2   FALSE
6. 1    5/29/2008   3   FALSE
7. 1    5/30/2008   2   FALSE
8. 1    6/15/2008   4   FALSE
9. 1    10/14/2014  1   FALSE
10. 1   10/16/2014  NA  FALSE
11. 2   8/12/2013   2   FALSE
12. 3   2/26/2012   2   FALSE
13. 3   2/27/2012   2   FALSE
14. 3   4/18/2012   3   FALSE
15. 3   4/18/2012   4   FALSE
16. 3   4/21/2012   4   FALSE
17. 3   4/23/2012   4   FALSE
18. 3   4/27/2012   4   FALSE
19. 3   5/8/2012    4   FALSE
20. 3   5/12/2012   4   FALSE
21. 3   5/15/2012   4   FALSE
22. 3   5/15/2012   NA  FALSE

我想找到高钾血症评分为3或4且为a的钾测试的次数。在同一天重复溶血= FALSE(必须按患者ID计算重复次数)目标是总次数测试符合重复次数,然后是重复次数的总次数。

有人可以帮我翻译我的伪代码到R代码吗?

    # data.frame = pots
    # for every row  (sorted by patient and result date) 
   for (i in 1:nrow(pots){  

      # for each patient (sorted by result date)
        # how do I do I count the rows for the individual patient?
        for (i in 1:length(pots$ID)) {

          # assign result date to use for calculation
          result_date = pots$result_date

          # if Hyperkalemia = 3 or 4
          if (Hyperkalemia == 3 | Hyperkalemia == 4)

            # go find the next result for patient where is.Hemolyzed = FALSE
            # how do I get the next result?
            for (i+1)

             # assign date to compare to first date
              next_result_date = pots$result_date
              if next_result_date > result_date 
                    then repeated_same_day <- FALSE 
                else if result_date == result_date
                      then repeated_same_day <- TRUE

        }
    }

目标:我想计算一次3级或4级非溶血性钾结果在24小时内进行另一次钾测试的频率(通过唯一ID)(我现在使用的是另一个字段 - 我想我可以添加一些日期函数计算24小时)。

编辑:我确实最终使用了for循环!分享以防万一对任何人都有帮助。后来我确实看到了一个错误,但对于我的数据集,它没问题。

library(dplyr)
pots <- read.csv("phis_potassium-2015-07-30.csv",  
                      head=TRUE,  stringsAsFactors = FALSE)

pots <- arrange(pots, MRN, COLLECTED_DATE)

pots$Hyperkalemia[is.na(pots$Hyperkalemia)] <- 0
pots$repeated_wi24hours <- NA
pots$met_criteria <- NA
pots$next_test_time_interval <- NA

# data.frame = pots
# for every patient  (sorted by patient and collected date) 
for (mrn in unique(pots$MRN)){ 
   # for each row for each patient (sorted by collected date)
     for (i in 1:length(pots$MRN[pots$MRN == pots$MRN[mrn]])) {
          # if Hyperkalemia = 3 or 4 AND Is.Hemolyzed == FALSE
         if((pots$Hyperkalemia[i] == 3 | pots$Hyperkalemia[i] == 4) & pots$Is.Hemolyzed[i] == FALSE){
           pots$met_criteria[i] <- TRUE
           # get time interval between tests
           pots$next_test_time_interval[i] <- difftime(pots$COLLECTED_DATE[i+1], pots$COLLECTED_DATE[i], units = "hours")
           # if next date is within 24 hours, then test repeated 
           if (pots$next_test_time_interval[i] <= 24 ){
                                pots$repeated_wi24hours[i] <- TRUE

               }
                else {
                  pots$repeated_wi24hours[i] <- FALSE
                }
}
}
}

期望的输出

ID  RESULT_DATE Hyperkalemia    Is.Hemolyzed    Met_criteria    Repeated
1   5/27/2008              2           FALSE        
1   5/28/2008              2           FALSE        
1   5/29/2008              2           FALSE        
1   5/29/2008              2           FALSE        
1   5/29/2008              3           FALSE    TRUE               FALSE

1   5/30/2008              2           FALSE        
1   6/15/2008              4           FALSE        
1   10/14/2014             1           FALSE        
2   8/12/2013              2           FALSE        
3   2/26/2012              2           FALSE        
3   2/27/2012              2           FALSE        
3   4/18/2012              3           FALSE    TRUE               TRUE

3   4/18/2012              4           FALSE    TRUE               FALSE

3   4/21/2012              4           FALSE    TRUE               FALSE

1 个答案:

答案 0 :(得分:2)

这个怎么样:

metCriteria <- function( dfPots )
{
  (dfPots$Hyperkalemia==3 | dfPots$Hyperkalemia==4) & !dfPots$Is.Hemolyzed
}

#----------------------------------------------------------------------

pots <- read.table(filename, header=TRUE)

d <- paste( as.character(pots$RESULT_DATE),
            "_ID",
            as.character(pots$ID))

lastOccurence <- unlist(lapply(d,function(x){which.min(diff(c(d,FALSE)==x))}))

pots <- cbind(pots, data.frame( Met_criteria = rep(FALSE,nrow(pots))),
                                Repeated     = rep(TRUE ,nrow(pots))   )

pots$Repeated[lastOccurence]                <- FALSE
pots$Met_criteria[which(metCriteria(pots))] <- TRUE

将日期和ID粘贴在矢量&#34; d&#34;中。 向量的第i个组成部分&#34; lastOccurence&#34;是日期/ ID对d [i]发生的行号或最后一次。

数据框&#34; pot&#34;由两列扩展,&#34; Met_criteria&#34;和&#34;重复&#34;。

  • &#34; Met_criteria&#34;被初始化&#34;错误&#34;。然后&#34;其中(metCriteria(pot))&#34;选择符合条件的行号。在这些行&#34; Met_critaria&#34;设置为&#34; TRUE&#34;。
  • &#34;重复&#34;已初始化&#34; TRUE&#34;。它设置为&#34; FALSE&#34;在那些最后一次出现相应日期和ID的行中。

示例:

> pots
   ID RESULT_DATE Hyperkalemia Is.Hemolyzed Met_criteria Repeated
1   1   5/27/2008            2        FALSE        FALSE    FALSE
2   1   5/28/2008            2        FALSE        FALSE    FALSE
3   3   5/28/2008            2        FALSE        FALSE    FALSE
4   1   5/29/2008            2        FALSE        FALSE     TRUE
5   1   5/29/2008            2        FALSE        FALSE     TRUE
6   1   5/29/2008            3        FALSE         TRUE    FALSE
7   2   5/29/2008            4        FALSE         TRUE    FALSE
8   1   5/30/2008            2        FALSE        FALSE    FALSE
9   1   6/15/2008            4        FALSE         TRUE    FALSE
10  1  10/14/2014            1        FALSE        FALSE    FALSE
11  1  10/16/2014           NA        FALSE        FALSE    FALSE
12  2   8/12/2013            2        FALSE        FALSE    FALSE
13  3   2/26/2012            2        FALSE        FALSE    FALSE
14  3   2/27/2012            2        FALSE        FALSE    FALSE
15  3   4/18/2012            3        FALSE         TRUE     TRUE
16  3   4/18/2012            4        FALSE         TRUE    FALSE
17  3   4/21/2012            4        FALSE         TRUE    FALSE
18  3   4/23/2012            4        FALSE         TRUE    FALSE
19  3   4/27/2012            4        FALSE         TRUE    FALSE
20  3    5/8/2012            4        FALSE         TRUE    FALSE
21  3   5/12/2012            4        FALSE         TRUE    FALSE
22  3   5/15/2012            4        FALSE         TRUE     TRUE
23  3   5/15/2012           NA        FALSE        FALSE    FALSE
>