clEnqueueReadImage抛出CL_OUT_OF_RESOURCES错误

时间:2015-07-30 06:16:36

标签: opencl

我是OpenCL的新手,我试图在OpenCL编程指南中运行示例代码。

尝试使用clEnqueueReadImage将过滤后的图像读回主机时,我收到了错误代码-5(对应于CL_OUT_OF_RESOURCES)。 这是本书中的代码:

//
// Book:      OpenCL(R) Programming Guide
// Authors:   Aaftab Munshi, Benedict Gaster, Timothy Mattson, James Fung, Dan Ginsburg
// ISBN-10:   0-321-74964-2
// ISBN-13:   978-0-321-74964-2
// Publisher: Addison-Wesley Professional
// URLs:      http://safari.informit.com/9780132488006/
//            http://www.openclprogrammingguide.com
//

// ImageFilter2D.cpp
//
//    This example demonstrates performing gaussian filtering on a 2D image using
//    OpenCL
//
//    Requires FreeImage library for image I/O:
//      http://freeimage.sourceforge.net/

#include <iostream>
#include <fstream>
#include <sstream>
#include <string.h>

#ifdef __APPLE__
#include <OpenCL/cl.h>
#else
#include <CL/cl.h>
#endif

#include "FreeImage.h"

///
//  Create an OpenCL context on the first available platform using
//  either a GPU or CPU depending on what is available.
//
cl_context CreateContext()
{
    cl_int errNum;
    cl_uint numPlatforms;
    cl_platform_id firstPlatformId;
    cl_context context = NULL;

    // First, select an OpenCL platform to run on.  For this example, we
    // simply choose the first available platform.  Normally, you would
    // query for all available platforms and select the most appropriate one.
    errNum = clGetPlatformIDs(1, &firstPlatformId, &numPlatforms);
    if (errNum != CL_SUCCESS || numPlatforms <= 0)
    {
        std::cerr << "Failed to find any OpenCL platforms." << std::endl;
        return NULL;
    }

    // Next, create an OpenCL context on the platform.  Attempt to
    // create a GPU-based context, and if that fails, try to create
    // a CPU-based context.
    cl_context_properties contextProperties[] =
    {
        CL_CONTEXT_PLATFORM,
        (cl_context_properties)firstPlatformId,
        0
    };
    context = clCreateContextFromType(contextProperties, CL_DEVICE_TYPE_GPU,
                                      NULL, NULL, &errNum);
    if (errNum != CL_SUCCESS)
    {
        std::cout << "Could not create GPU context, trying CPU..." << std::endl;
        context = clCreateContextFromType(contextProperties, CL_DEVICE_TYPE_CPU,
                                          NULL, NULL, &errNum);
        if (errNum != CL_SUCCESS)
        {
            std::cerr << "Failed to create an OpenCL GPU or CPU context." << std::endl;
            return NULL;
        }
    }

    return context;
}

///
//  Create a command queue on the first device available on the
//  context
//
cl_command_queue CreateCommandQueue(cl_context context, cl_device_id *device)
{
    cl_int errNum;
    cl_device_id *devices;
    cl_command_queue commandQueue = NULL;
    size_t deviceBufferSize = -1;

    // First get the size of the devices buffer
    errNum = clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &deviceBufferSize);
    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Failed call to clGetContextInfo(...,GL_CONTEXT_DEVICES,...)";
        return NULL;
    }

    if (deviceBufferSize <= 0)
    {
        std::cerr << "No devices available.";
        return NULL;
    }

    // Allocate memory for the devices buffer
    devices = new cl_device_id[deviceBufferSize / sizeof(cl_device_id)];
    errNum = clGetContextInfo(context, CL_CONTEXT_DEVICES, deviceBufferSize, devices, NULL);
    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Failed to get device IDs";
        return NULL;
    }

    // In this example, we just choose the first available device.  In a
    // real program, you would likely use all available devices or choose
    // the highest performance device based on OpenCL device queries
    commandQueue = clCreateCommandQueue(context, devices[0], 0, NULL);
    if (commandQueue == NULL)
    {
        std::cerr << "Failed to create commandQueue for device 0";
        return NULL;
    }

    *device = devices[0];
    delete [] devices;
    return commandQueue;
}

///
//  Create an OpenCL program from the kernel source file
//
cl_program CreateProgram(cl_context context, cl_device_id device, const char* fileName)
{
    cl_int errNum;
    cl_program program;

    std::ifstream kernelFile(fileName, std::ios::in);
    if (!kernelFile.is_open())
    {
        std::cerr << "Failed to open file for reading: " << fileName << std::endl;
        return NULL;
    }

    std::ostringstream oss;
    oss << kernelFile.rdbuf();

    std::string srcStdStr = oss.str();
    const char *srcStr = srcStdStr.c_str();
    program = clCreateProgramWithSource(context, 1,
                                        (const char**)&srcStr,
                                        NULL, NULL);
    if (program == NULL)
    {
        std::cerr << "Failed to create CL program from source." << std::endl;
        return NULL;
    }

    errNum = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
    if (errNum != CL_SUCCESS)
    {
        // Determine the reason for the error
        char buildLog[16384];
        clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,
                              sizeof(buildLog), buildLog, NULL);

        std::cerr << "Error in kernel: " << std::endl;
        std::cerr << buildLog;
        clReleaseProgram(program);
        return NULL;
    }

    return program;
}


///
//  Cleanup any created OpenCL resources
//
void Cleanup(cl_context context, cl_command_queue commandQueue,
             cl_program program, cl_kernel kernel, cl_mem imageObjects[2],
             cl_sampler sampler)
{
    for (int i = 0; i < 2; i++)
    {
        if (imageObjects[i] != 0)
            clReleaseMemObject(imageObjects[i]);
    }
    if (commandQueue != 0)
        clReleaseCommandQueue(commandQueue);

    if (kernel != 0)
        clReleaseKernel(kernel);

    if (program != 0)
        clReleaseProgram(program);

    if (sampler != 0)
        clReleaseSampler(sampler);

    if (context != 0)
        clReleaseContext(context);

}

///
//  Load an image using the FreeImage library and create an OpenCL
//  image out of it
//
cl_mem LoadImage(cl_context context, char *fileName, int &width, int &height)
{
    FREE_IMAGE_FORMAT format = FreeImage_GetFileType(fileName, 0);
    FIBITMAP* image = FreeImage_Load(format, fileName);

    // Convert to 32-bit image
    FIBITMAP* temp = image;
    image = FreeImage_ConvertTo32Bits(image);
    FreeImage_Unload(temp);

    width = FreeImage_GetWidth(image);
    height = FreeImage_GetHeight(image);

    char *buffer = new char[width * height * 4];
    memcpy(buffer, FreeImage_GetBits(image), width * height * 4);

    FreeImage_Unload(image);

    // Create OpenCL image
    cl_image_format clImageFormat;
    clImageFormat.image_channel_order = CL_RGBA;
    clImageFormat.image_channel_data_type = CL_UNORM_INT8;

    cl_int errNum;
    cl_mem clImage;
    clImage = clCreateImage2D(context,
                            CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                            &clImageFormat,
                            width,
                            height,
                            0,
                            buffer,
                            &errNum);

    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Error creating CL image object" << std::endl;
        return 0;
    }

    return clImage;
}

///
//  Save an image using the FreeImage library
//
bool SaveImage(char *fileName, char *buffer, int width, int height)
{
    FREE_IMAGE_FORMAT format = FreeImage_GetFIFFromFilename(fileName);
    FIBITMAP *image = FreeImage_ConvertFromRawBits((BYTE*)buffer, width,
                        height, width * 4, 32,
                        0xFF000000, 0x00FF0000, 0x0000FF00);
    return (FreeImage_Save(format, image, fileName) == TRUE) ? true : false;
}

///
//  Round up to the nearest multiple of the group size
//
size_t RoundUp(int groupSize, int globalSize)
{
    int r = globalSize % groupSize;
    if(r == 0)
    {
        return globalSize;
    }
    else
    {
        return globalSize + groupSize - r;
    }
}

///
//  main() for HelloBinaryWorld example
//
int main(int argc, char** argv)
{

    cl_context context = 0;
    cl_command_queue commandQueue = 0;
    cl_program program = 0;
    cl_device_id device = 0;
    cl_kernel kernel = 0;
    cl_mem imageObjects[2] = { 0, 0 };
    cl_sampler sampler = 0;
    cl_int errNum;


    if (argc != 3)
    {
        std::cerr << "USAGE: " << argv[0] << " <inputImageFile> <outputImageFiles>" << std::endl;
        return 1;
    }

    // Create an OpenCL context on first available platform
    context = CreateContext();
    if (context == NULL)
    {
        std::cerr << "Failed to create OpenCL context." << std::endl;
        return 1;
    }

    // Create a command-queue on the first device available
    // on the created context
    commandQueue = CreateCommandQueue(context, &device);
    if (commandQueue == NULL)
    {
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        return 1;
    }

    // Make sure the device supports images, otherwise exit
    cl_bool imageSupport = CL_FALSE;
    clGetDeviceInfo(device, CL_DEVICE_IMAGE_SUPPORT, sizeof(cl_bool),
                    &imageSupport, NULL);
    if (imageSupport != CL_TRUE)
    {
        std::cerr << "OpenCL device does not support images." << std::endl;
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        return 1;
    }

    // Load input image from file and load it into
    // an OpenCL image object
    int width, height;
    imageObjects[0] = LoadImage(context, argv[1], width, height);
    if (imageObjects[0] == 0)
    {
        std::cerr << "Error loading: " << std::string(argv[1]) << std::endl;
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        return 1;
    }

    // Create ouput image object
    cl_image_format clImageFormat;
    clImageFormat.image_channel_order = CL_RGBA;
    clImageFormat.image_channel_data_type = CL_UNORM_INT8;
    imageObjects[1] = clCreateImage2D(context,
                                       CL_MEM_WRITE_ONLY,
                                       &clImageFormat,
                                       width,
                                       height,
                                       0,
                                       NULL,
                                       &errNum);

    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Error creating CL output image object." << std::endl;
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        return 1;
    }


    // Create sampler for sampling image object
    sampler = clCreateSampler(context,
                              CL_FALSE, // Non-normalized coordinates
                              CL_ADDRESS_CLAMP_TO_EDGE,
                              CL_FILTER_NEAREST,
                              &errNum);

    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Error creating CL sampler object." << std::endl;
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        return 1;
    }

    // Create OpenCL program
    program = CreateProgram(context, device, "ImageFilter2D.cl");
    if (program == NULL)
    {
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        return 1;
    }

    // Create OpenCL kernel
    kernel = clCreateKernel(program, "gaussian_filter", NULL);
    if (kernel == NULL)
    {
        std::cerr << "Failed to create kernel" << std::endl;
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        return 1;
    }

    // Set the kernel arguments
    errNum = clSetKernelArg(kernel, 0, sizeof(cl_mem), &imageObjects[0]);
    errNum |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &imageObjects[1]);
    errNum |= clSetKernelArg(kernel, 2, sizeof(cl_sampler), &sampler);
    errNum |= clSetKernelArg(kernel, 3, sizeof(cl_int), &width);
    errNum |= clSetKernelArg(kernel, 4, sizeof(cl_int), &height);
    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Error setting kernel arguments." << std::endl;
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        return 1;
    }

    size_t localWorkSize[2] = { 16, 16};
    size_t globalWorkSize[2] =  { RoundUp(localWorkSize[0], width),
                                  RoundUp(localWorkSize[1], height) };

    // Queue the kernel up for execution
    errNum = clEnqueueNDRangeKernel(commandQueue, kernel, 2, NULL,
                                    globalWorkSize, localWorkSize,
                                    0, NULL, NULL);
    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Error queuing kernel for execution." << std::endl;
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        return 1;
    }



    // Read the output buffer back to the Host
    char *buffer = new char [width * height * 4];
    size_t origin[3] = { 0, 0, 0 };
    size_t region[3] = { width, height, 1};
    errNum = clEnqueueReadImage(commandQueue, imageObjects[1], CL_TRUE,
                                origin, region, 0, 0, buffer,
                                0, NULL, NULL);

    if (errNum != CL_SUCCESS)
    {
        std::cout<<errNum<<std::endl;
        std::cerr << "Error reading result buffer." << std::endl;
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        return 1;
    }

    std::cout << std::endl;
    std::cout << "Executed program succesfully." << std::endl;

    //memset(buffer, 0xff, width * height * 4);
    // Save the image out to disk
    if (!SaveImage(argv[2], buffer, width, height))
    {
        std::cerr << "Error writing output image: " << argv[2] << std::endl;
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        delete [] buffer;
        return 1;
    }

    delete [] buffer;
    Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
    return 0;
}

我使用的图像是从互联网上下载的随机图像。

我还使用clGetDeviceInfo返回CL_LOCAL_MEM_SIZE,即4294967295

0 个答案:

没有答案