我想在CPU上动态创建一个函数指针列表(使用从MyForeignKeyId
调用的某种push_back()
方法)并将其复制到GPU main()
或{{ 1}}数组,无需求助于静态__constant__
函数指针。我相信this question与我的问题有关;但是,我的目标是迭代地创建__device__
函数指针数组,然后将其复制到__device__
函数指针数组,而不是在声明时初始化后者。
带有静态函数指针的工作代码示例(如here或here所示)将是:
COMMON.H:
__host__
main.cu:
__constant__
规格:GeForce GTX 670,为#ifndef COMMON_H
#define COMMON_H
#include <stdio.h>
#include <iostream>
#define num_functions 3
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
// fptr_t: Pointer to void function that takes two integer lvalues
typedef void (*fptr_t)(int&, int&);
// some examples of void(int&, int&) functions...
__device__ void Add(int &a, int &b) {printf("Add... %i + %i = %i\n", a, b, a+b);}
__device__ void Subtract(int &a, int &b) {printf("Subtract... %i - %i = %i\n", a, b, a-b);}
__device__ void Multiply(int &a, int &b) {printf("Multiply... %i * %i = %i\n", a, b, a*b);}
// List of function pointers in device memory
__constant__ fptr_t constant_fList[num_functions];
// Kernel called from main(): choose the function to apply whose index is equal to thread ID
__global__ void kernel(int a, int b) {
fptr_t f;
if (threadIdx.x < num_functions) {
f = constant_fList[threadIdx.x];
f(a,b);
}
}
#endif
,CUDA 6.5,Ubuntu 14.04编译
我希望避免使用静态设备函数指针,因为追加每个函数都需要在用户端进行代码维护 - 声明一个新的静态指针,如#include "common.h"
// Static device function pointers
__device__ fptr_t p_Add = Add;
__device__ fptr_t p_Sub = Subtract;
__device__ fptr_t p_Mul = Multiply;
// Load function list to constant memory
void loadList_staticpointers() {
fptr_t h_fList[num_functions];
gpuErrchk( cudaMemcpyFromSymbol(&h_fList[0], p_Add, sizeof(fptr_t)) );
gpuErrchk( cudaMemcpyFromSymbol(&h_fList[1], p_Sub, sizeof(fptr_t)) );
gpuErrchk( cudaMemcpyFromSymbol(&h_fList[2], p_Mul, sizeof(fptr_t)) );
gpuErrchk( cudaMemcpyToSymbol(constant_fList, h_fList, num_functions * sizeof(fptr_t)) );
}
int main() {
loadList_staticpointers();
int a = 12, b = 15;
kernel<<<1,3>>>(a, b);
gpuErrchk(cudaGetLastError());
gpuErrchk(cudaDeviceSynchronize());
return 0;
}
或-arch=sm_30
,操纵{ {1}}等。为了说清楚,我正在尝试类似以下(崩溃)代码:
main_wrong.cu:
p_Add
我的理解是指向主机地址的函数指针被复制到GPU并且内核无法使用,当函数{需要指向GPU地址的指针时{1}}被调用。使用设备端指针填充主机端数组对我来说可以使用原始数据(请参阅this question),但不能使用函数指针。使用统一内存的琐碎尝试也失败了......到目前为止,我只发现了静态设备端指针。没有其他方法可以将动态创建的CPU函数指针数组复制到GPU上吗?
答案 0 :(得分:4)
如果您可以使用C ++ 11(从CUDA 7开始支持),您可以使用以下命令自动生成函数表:
template <fptr_t... Functions>
__global__ void kernel(int a, int b)
{
constexpr auto num_f = sizeof...(Functions);
constexpr fptr_t table[] = { Functions... };
if (threadIdx.x < num_f)
{
fptr_t f = table[threadIdx.x];
f(a,b);
}
}
然后您将使用
调用此内核kernel<Add, Subtract, Multiply><<<1,3>>>(a, b);
答案 1 :(得分:0)
受 ms 的回答启发,我选择将函数指针作为模板参数传递 - 这实际上是解决我的问题的关键 - 并发现了在没有静态函数指针的帮助的情况下,迭代地从__device__
函数中填充dev_fList
函数指针main()
数组 确实是可能的,加上C ++ 11的兼容性是甚至不需要!
以下是全局内存中__device__
数组的工作示例。我还没有尝试过它的常量内存对应物,但是一旦全局存储器阵列被令人满意地创建,我的猜测是cudaMemcpyToSymbol(..., cudaMemcpyDeviceToDevice)
应该可以做到这一点。
内核kernel()
为函数指针dev_f
创建GPU地址,并复制作为模板参数传递的函数f
。由于这是来自CPU的迭代过程,因此该内核中只涉及一个线程(线程0
),该线程使用配置<<<1,1>>>
启动。静态变量count_f
负责dev_fList
中的索引。
COMMON.H:
#ifndef COMMON_H
#define COMMON_H
#include <stdio.h>
#include <iostream>
#define num_functions 3
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
// fptr_t: Pointer to void function that takes two integer lvalues
typedef void (*fptr_t)(int&, int&);
// some examples of void(int&, int&) functions...
__device__ void Add(int &a, int &b) {printf("Add... %i + %i = %i\n", a, b, a+b);}
__device__ void Subtract(int &a, int &b) {printf("Subtract... %i - %i = %i\n", a, b, a-b);}
__device__ void Multiply(int &a, int &b) {printf("Multiply... %i * %i = %i\n", a, b, a*b);}
// List of function pointers in device memory
// Note that, in my example, it resides in global memory space, not constant memory
__device__ fptr_t dev_fList[num_functions];
#endif
main.cu:
#include "common.h"
// Index in dev_fList[] == number of times addFunc<>() was launched
static int count_f = 0;
// Kernel that copies function f to the GPU
template<fptr_t f>
__global__ void kernel(int a, int b, int idx) {
fptr_t dev_f = f; // Create device function pointer
dev_fList[idx] = dev_f; // Populate the GPU array of function pointers
dev_fList[idx](a,b); // Make sure that the array was populated correctly
}
// Add function to functions list
template<fptr_t f>
void addFunc(const int &a, const int &b) {
if (count_f >= num_functions) {
std::cout << "Error: not enough memory statically allocated on device!\n";
exit(EXIT_FAILURE);
}
kernel<f><<<1,1>>>(a,b,count_f);
gpuErrchk(cudaGetLastError());
gpuErrchk(cudaDeviceSynchronize());
count_f++;
}
int main() {
int a = 12, b = 15;
addFunc<Add>(a,b);
addFunc<Subtract>(a,b);
addFunc<Multiply>(a,b);
return 0;
}
编辑:添加了函数指针数组的副本到常量内存
对于它的价值,这里是如何将我们的dev_fList
数组复制到常量内存:
在common.h中:
__constant__ fptr_t cst_fList[num_functions];
__global__ void cst_test(int a, int b, int idx) {
if (threadIdx.x < idx) cst_fList[threadIdx.x](a,b);
}
在main.cu main()
函数中,添加了所有需要的函数后:
fptr_t *temp;
gpuErrchk( cudaMemcpyFromSymbol((void**)&temp, dev_fList[0], count_f * sizeof(fptr_t)) );
gpuErrchk( cudaMemcpyToSymbol(cst_fList[0], &temp, count_f * sizeof(fptr_t)) );
cst_test<<<1,count_f>>>(a,b, count_f);
gpuErrchk(cudaGetLastError());
gpuErrchk(cudaDeviceSynchronize());
据我所知,内存可能会通过temp
传输到主机然后再返回设备,这看起来很丑陋;欢迎提出更优雅的建议。
答案 2 :(得分:-2)
不可能使用动态创建的CUDA设备函数指针(至少不会没有崩溃或UB)。基于模板的解决方案在编译时工作(非动态)。 CUDA设备函数指针接近您,看到全局空间中的任何地方都需要设备符号。这意味着对于每个函数,必须已经声明了设备函数指针。这也意味着您不能使用普通的C函数指针作为参考,例如,在运行时设置。在理解中,使用CUDA设备函数指针是有问题的。基于模板的方法看起来用户友好,但根据定义不是动态的。
显示带有函数指针的结构的示例:
此示例显示了具有一些函数指针的结构。在普通的C ++代码中,您可以在程序运行时(动态)设置和更改设备函数指针。使用CUDA,下面的示例不可能,因为结构中的函数指针不是有效的设备符号。这意味着它们不能与“cudaMemcpyFromSymbol”一起使用。为了避免这种情况,必须创建原始函数(函数指针的目标)或全局cuda设备函数指针。两者都不是动态的。
这是动态分配:
typedef float (*pDistanceFu) (float, float);
typedef float (*pDecayFu) (float, float, float);
// In C++ you can set and reset the function pointer during run time whenever you want ..
struct DistFunction {
/*__host__ __device__*/ pDistanceFu distance; // uncomment for NVCC ..
/*__host__ __device__*/ pDecayFu rad_decay;
/*__host__ __device__*/ pDecayFu lrate_decay;
};
// you can do what you want ..
DistFunction foo, bar;
foo.distance = bar.distance;
// ..
这是CUDA应该如何,但它会失败,因为没有有效的设备符号:(
pDistanceFu hDistance;
pDecayFu hRadDay;
pDecayFu hLRateDecay;
void DeviceAssign(DistFunction &dist) {
cudaMemcpyFromSymbol(&hDistance, dist.distance, sizeof(pDistanceFu) );
cudaMemcpyFromSymbol(&hRadDay, dist.rad_decay, sizeof(pDecayFu) );
cudaMemcpyFromSymbol(&hLRateDecay, dist.lrate_decay, sizeof(pDecayFu) );
dist.distance = hDistance;
dist.rad_decay = hRadDay;
dist.lrate_decay = hLRateDecay;
}
这是经典的方法,但你注意到,它不再是动态的,因为设备符号必须引用函数引用,而不是指向运行时可能引用的指针。
// .. and this would work
#ifdef __CUDACC__
__host__ __device__
#endif
inline float fcn_rad_decay (float sigma0, float T, float lambda) {
return std::floor(sigma0*exp(-T/lambda) + 0.5f);
}
__device__ pDistanceFu pFoo= fcn_rad_decay; // pointer must target a reference, no host pointer possible
void DeviceAssign2(DistFunction &dist) {
cudaMemcpyFromSymbol(&hLRateDecay, &fcn_rad_decay, sizeof(pDecayFu) );
// the same:
// cudaMemcpyFromSymbol(&hLRateDecay, pFoo, sizeof(pDecayFu) );
// ..
dist.lrate_decay = hLRateDecay;
// ..
}