创建大型Pandas DataFrames:preallocation vs append vs concat

时间:2015-07-29 02:06:03

标签: python pandas

我对Pandas在按块构建大型数据帧块时的性能感到困惑。在Numpy中,我们(几乎)总是通过预先分配一个大的空数组然后填充值来看到更好的性能。据我了解,这是因为Numpy立刻抓住了它需要的所有内存,而不必每次append操作重新分配内存。

在Pandas中,我似乎通过使用df = df.append(temp)模式获得了更好的性能。

以下是时间示例。接下来是Timer类的定义。正如您所见,我发现预分配比使用append慢大约10倍!使用适当dtype的np.empty值预分配数据框有很大帮助,但append方法仍然是最快的。

import numpy as np
from numpy.random import rand
import pandas as pd

from timer import Timer

# Some constants
num_dfs = 10  # Number of random dataframes to generate
n_rows = 2500
n_cols = 40
n_reps = 100  # Number of repetitions for timing

# Generate a list of num_dfs dataframes of random values
df_list = [pd.DataFrame(rand(n_rows*n_cols).reshape((n_rows, n_cols)), columns=np.arange(n_cols)) for i in np.arange(num_dfs)]

##
# Define two methods of growing a large dataframe
##

# Method 1 - append dataframes
def method1():
    out_df1 = pd.DataFrame(columns=np.arange(4))
    for df in df_list:
        out_df1 = out_df1.append(df, ignore_index=True)
    return out_df1

def method2():
# # Create an empty dataframe that is big enough to hold all the dataframes in df_list
out_df2 = pd.DataFrame(columns=np.arange(n_cols), index=np.arange(num_dfs*n_rows))
#EDIT_1: Set the dtypes of each column
for ix, col in enumerate(out_df2.columns):
    out_df2[col] = out_df2[col].astype(df_list[0].dtypes[ix])
# Fill in the values
for ix, df in enumerate(df_list):
    out_df2.iloc[ix*n_rows:(ix+1)*n_rows, :] = df.values
return out_df2

# EDIT_2: 
# Method 3 - preallocate dataframe with np.empty data of appropriate type
def method3():
    # Create fake data array
    data = np.transpose(np.array([np.empty(n_rows*num_dfs, dtype=dt) for dt in df_list[0].dtypes]))
    # Create placeholder dataframe
    out_df3 = pd.DataFrame(data)
    # Fill in the real values
    for ix, df in enumerate(df_list):
        out_df3.iloc[ix*n_rows:(ix+1)*n_rows, :] = df.values
    return out_df3

##
# Time both methods
##

# Time Method 1
times_1 = np.empty(n_reps)
for i in np.arange(n_reps):
    with Timer() as t:
       df1 = method1()
    times_1[i] = t.secs
print 'Total time for %d repetitions of Method 1: %f [sec]' % (n_reps, np.sum(times_1))
print 'Best time: %f' % (np.min(times_1))
print 'Mean time: %f' % (np.mean(times_1))

#>>  Total time for 100 repetitions of Method 1: 2.928296 [sec]
#>>  Best time: 0.028532
#>>  Mean time: 0.029283

# Time Method 2
times_2 = np.empty(n_reps)
for i in np.arange(n_reps):
    with Timer() as t:
        df2 = method2()
    times_2[i] = t.secs
print 'Total time for %d repetitions of Method 2: %f [sec]' % (n_reps, np.sum(times_2))
print 'Best time: %f' % (np.min(times_2))
print 'Mean time: %f' % (np.mean(times_2))

#>>  Total time for 100 repetitions of Method 2: 32.143247 [sec]
#>>  Best time: 0.315075
#>>  Mean time: 0.321432

# Time Method 3
times_3 = np.empty(n_reps)
for i in np.arange(n_reps):
    with Timer() as t:
        df3 = method3()
    times_3[i] = t.secs
print 'Total time for %d repetitions of Method 3: %f [sec]' % (n_reps, np.sum(times_3))
print 'Best time: %f' % (np.min(times_3))
print 'Mean time: %f' % (np.mean(times_3))

#>>  Total time for 100 repetitions of Method 3: 6.577038 [sec]
#>>  Best time: 0.063437
#>>  Mean time: 0.065770

我使用Huy Nguyen的Timer礼貌:

# credit: http://www.huyng.com/posts/python-performance-analysis/

import time

class Timer(object):
    def __init__(self, verbose=False):
        self.verbose = verbose

    def __enter__(self):
        self.start = time.clock()
        return self

    def __exit__(self, *args):
        self.end = time.clock()
        self.secs = self.end - self.start
        self.msecs = self.secs * 1000  # millisecs
        if self.verbose:
            print 'elapsed time: %f ms' % self.msecs

如果您仍在关注,我有两个问题:

1)为什么append方法更快? (注意:对于非常小的数据帧,即n_rows = 40,它实际上更慢。)

2)从块中构建大型数据帧的最有效方法是什么? (在我的例子中,块都是大型csv文件)。

感谢您的帮助!

EDIT_1: 在我的真实世界项目中,列具有不同的dtypes。因此,根据BrenBarn的建议,我无法使用pd.DataFrame(.... dtype=some_type)技巧来提高预分配的性能。 dtype参数强制所有列都是相同的dtype [Ref。问题4464]

我在代码中向method2()添加了一些行,以逐列更改dtypes以匹配输入数据帧。这种操作很昂贵,并且在编写行块时无法使用适当的dtypes。

EDIT_2:尝试使用占位符数组np.empty(... dtyp=some_type)预分配数据框。 Per @ Joris的建议。

4 个答案:

答案 0 :(得分:26)

您的基准实际上太小,无法显示真正的差异。 追加,复制每个时间,所以你实际上是在复制N个存储空间N *(N-1)次。随着数据框大小的增加,这非常低效。这在一个非常小的框架中肯定无关紧要。但如果你有任何实际尺寸,这很重要。这在文档here中有明确说明,虽然是一个小小的警告。

In [97]: df = DataFrame(np.random.randn(100000,20))

In [98]: df['B'] = 'foo'

In [99]: df['C'] = pd.Timestamp('20130101')

In [103]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 100000 entries, 0 to 99999
Data columns (total 22 columns):
0     100000 non-null float64
1     100000 non-null float64
2     100000 non-null float64
3     100000 non-null float64
4     100000 non-null float64
5     100000 non-null float64
6     100000 non-null float64
7     100000 non-null float64
8     100000 non-null float64
9     100000 non-null float64
10    100000 non-null float64
11    100000 non-null float64
12    100000 non-null float64
13    100000 non-null float64
14    100000 non-null float64
15    100000 non-null float64
16    100000 non-null float64
17    100000 non-null float64
18    100000 non-null float64
19    100000 non-null float64
B     100000 non-null object
C     100000 non-null datetime64[ns]
dtypes: datetime64[ns](1), float64(20), object(1)
memory usage: 17.5+ MB

附加

In [85]: def f1():
   ....:     result = df
   ....:     for i in range(9):
   ....:         result = result.append(df)
   ....:     return result
   ....: 

的毗连

In [86]: def f2():
   ....:     result = []
   ....:     for i in range(10):
   ....:         result.append(df)
   ....:     return pd.concat(result)
   ....: 

In [100]: f1().equals(f2())
Out[100]: True

In [101]: %timeit f1()
1 loops, best of 3: 1.66 s per loop

In [102]: %timeit f2()
1 loops, best of 3: 220 ms per loop

请注意,我甚至不愿意尝试预先分配。它有点复杂,特别是因为你正在处理多个dtypes(例如你可以制作一个巨大的框架而只是.loc并且它会起作用)。但pd.concat只是简单,可靠,快速。

从上面看你的尺码时间

In [104]: df = DataFrame(np.random.randn(2500,40))

In [105]: %timeit f1()
10 loops, best of 3: 33.1 ms per loop

In [106]: %timeit f2()
100 loops, best of 3: 4.23 ms per loop

答案 1 :(得分:4)

您没有为out_df2指定任何数据或类型,因此它具有“对象”dtype。这使得为​​其分配值非常慢。指定float64 dtype:

out_df2 = pd.DataFrame(columns=np.arange(n_cols), index=np.arange(num_dfs*n_rows), dtype=np.float64)

你会看到一个戏剧性的加速。当我尝试时,method2使用此更改的速度大约是method1的两倍。

答案 2 :(得分:4)

@Jeff,addVal赢了一英里!我使用<button type="button" onClick="addval(this)" name="opsional">Tambahkan</button> pd.concat对第四种方法进行了基准测试。结果是明确的:

pd.concat定义:

num_dfs = 500

在原始问题中使用相同的method4()分析结果:

# Method 4 - us pd.concat on df_list
def method4():
return pd.concat(df_list, ignore_index=True)

Timer方法比预先分配Total time for 100 repetitions of Method 1: 3679.334655 [sec] Best time: 35.570036 Mean time: 36.793347 Total time for 100 repetitions of Method 2: 1569.917425 [sec] Best time: 15.457102 Mean time: 15.699174 Total time for 100 repetitions of Method 3: 325.730455 [sec] Best time: 3.192702 Mean time: 3.257305 Total time for 100 repetitions of Method 4: 25.448473 [sec] Best time: 0.244309 Mean time: 0.254485 掌控者快13倍。

答案 3 :(得分:1)

杰夫的回答是正确的,但我发现我的数据类型另一个解决方案效果更好。

def df_(): 
    return pd.DataFrame(['foo']*np.random.randint(100)).transpose()

k = 100
frames = [df_() for x in range(0, k)]

def f1():
    result = frames[0]
    for i in range(k-1):
        result = result.append(frames[i+1])
    return result

def f2():  
    result = []
    for i in range(k):
        result.append(frames[i])
    return pd.concat(result)

def f3():
    result = []
    for i in range(k):
       result.append(frames[i])

    n = 2
    while len(result) > 1:
        _result = []
        for i in range(0, len(result), n):
            _result.append(pd.concat(result[i:i+n]))
        result = _result
    return result[0]

我的数据帧是单行且长度不一的 - 空条目必须与f3()成功的原因有关。

In [33]: f1().equals(f2())
Out[33]: True

In [34]: f1().equals(f3())
Out[34]: True

In [35]: %timeit f1()
357 ms ± 192 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [36]: %timeit f2()
562 ms ± 68.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [37]: %timeit f3()
215 ms ± 58.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

上述结果仍为k = 100,但对于较大的k,则更为显着。