我对Pandas在按块构建大型数据帧块时的性能感到困惑。在Numpy中,我们(几乎)总是通过预先分配一个大的空数组然后填充值来看到更好的性能。据我了解,这是因为Numpy立刻抓住了它需要的所有内存,而不必每次append
操作重新分配内存。
在Pandas中,我似乎通过使用df = df.append(temp)
模式获得了更好的性能。
以下是时间示例。接下来是Timer
类的定义。正如您所见,我发现预分配比使用append
慢大约10倍!使用适当dtype的np.empty
值预分配数据框有很大帮助,但append
方法仍然是最快的。
import numpy as np
from numpy.random import rand
import pandas as pd
from timer import Timer
# Some constants
num_dfs = 10 # Number of random dataframes to generate
n_rows = 2500
n_cols = 40
n_reps = 100 # Number of repetitions for timing
# Generate a list of num_dfs dataframes of random values
df_list = [pd.DataFrame(rand(n_rows*n_cols).reshape((n_rows, n_cols)), columns=np.arange(n_cols)) for i in np.arange(num_dfs)]
##
# Define two methods of growing a large dataframe
##
# Method 1 - append dataframes
def method1():
out_df1 = pd.DataFrame(columns=np.arange(4))
for df in df_list:
out_df1 = out_df1.append(df, ignore_index=True)
return out_df1
def method2():
# # Create an empty dataframe that is big enough to hold all the dataframes in df_list
out_df2 = pd.DataFrame(columns=np.arange(n_cols), index=np.arange(num_dfs*n_rows))
#EDIT_1: Set the dtypes of each column
for ix, col in enumerate(out_df2.columns):
out_df2[col] = out_df2[col].astype(df_list[0].dtypes[ix])
# Fill in the values
for ix, df in enumerate(df_list):
out_df2.iloc[ix*n_rows:(ix+1)*n_rows, :] = df.values
return out_df2
# EDIT_2:
# Method 3 - preallocate dataframe with np.empty data of appropriate type
def method3():
# Create fake data array
data = np.transpose(np.array([np.empty(n_rows*num_dfs, dtype=dt) for dt in df_list[0].dtypes]))
# Create placeholder dataframe
out_df3 = pd.DataFrame(data)
# Fill in the real values
for ix, df in enumerate(df_list):
out_df3.iloc[ix*n_rows:(ix+1)*n_rows, :] = df.values
return out_df3
##
# Time both methods
##
# Time Method 1
times_1 = np.empty(n_reps)
for i in np.arange(n_reps):
with Timer() as t:
df1 = method1()
times_1[i] = t.secs
print 'Total time for %d repetitions of Method 1: %f [sec]' % (n_reps, np.sum(times_1))
print 'Best time: %f' % (np.min(times_1))
print 'Mean time: %f' % (np.mean(times_1))
#>> Total time for 100 repetitions of Method 1: 2.928296 [sec]
#>> Best time: 0.028532
#>> Mean time: 0.029283
# Time Method 2
times_2 = np.empty(n_reps)
for i in np.arange(n_reps):
with Timer() as t:
df2 = method2()
times_2[i] = t.secs
print 'Total time for %d repetitions of Method 2: %f [sec]' % (n_reps, np.sum(times_2))
print 'Best time: %f' % (np.min(times_2))
print 'Mean time: %f' % (np.mean(times_2))
#>> Total time for 100 repetitions of Method 2: 32.143247 [sec]
#>> Best time: 0.315075
#>> Mean time: 0.321432
# Time Method 3
times_3 = np.empty(n_reps)
for i in np.arange(n_reps):
with Timer() as t:
df3 = method3()
times_3[i] = t.secs
print 'Total time for %d repetitions of Method 3: %f [sec]' % (n_reps, np.sum(times_3))
print 'Best time: %f' % (np.min(times_3))
print 'Mean time: %f' % (np.mean(times_3))
#>> Total time for 100 repetitions of Method 3: 6.577038 [sec]
#>> Best time: 0.063437
#>> Mean time: 0.065770
我使用Huy Nguyen的Timer
礼貌:
# credit: http://www.huyng.com/posts/python-performance-analysis/
import time
class Timer(object):
def __init__(self, verbose=False):
self.verbose = verbose
def __enter__(self):
self.start = time.clock()
return self
def __exit__(self, *args):
self.end = time.clock()
self.secs = self.end - self.start
self.msecs = self.secs * 1000 # millisecs
if self.verbose:
print 'elapsed time: %f ms' % self.msecs
如果您仍在关注,我有两个问题:
1)为什么append
方法更快? (注意:对于非常小的数据帧,即n_rows = 40
,它实际上更慢。)
2)从块中构建大型数据帧的最有效方法是什么? (在我的例子中,块都是大型csv文件)。
感谢您的帮助!
EDIT_1:
在我的真实世界项目中,列具有不同的dtypes。因此,根据BrenBarn的建议,我无法使用pd.DataFrame(.... dtype=some_type)
技巧来提高预分配的性能。 dtype参数强制所有列都是相同的dtype [Ref。问题4464]
我在代码中向method2()
添加了一些行,以逐列更改dtypes以匹配输入数据帧。这种操作很昂贵,并且在编写行块时无法使用适当的dtypes。
EDIT_2:尝试使用占位符数组np.empty(... dtyp=some_type)
预分配数据框。 Per @ Joris的建议。
答案 0 :(得分:26)
您的基准实际上太小,无法显示真正的差异。 追加,复制每个时间,所以你实际上是在复制N个存储空间N *(N-1)次。随着数据框大小的增加,这非常低效。这在一个非常小的框架中肯定无关紧要。但如果你有任何实际尺寸,这很重要。这在文档here中有明确说明,虽然是一个小小的警告。
In [97]: df = DataFrame(np.random.randn(100000,20))
In [98]: df['B'] = 'foo'
In [99]: df['C'] = pd.Timestamp('20130101')
In [103]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 100000 entries, 0 to 99999
Data columns (total 22 columns):
0 100000 non-null float64
1 100000 non-null float64
2 100000 non-null float64
3 100000 non-null float64
4 100000 non-null float64
5 100000 non-null float64
6 100000 non-null float64
7 100000 non-null float64
8 100000 non-null float64
9 100000 non-null float64
10 100000 non-null float64
11 100000 non-null float64
12 100000 non-null float64
13 100000 non-null float64
14 100000 non-null float64
15 100000 non-null float64
16 100000 non-null float64
17 100000 non-null float64
18 100000 non-null float64
19 100000 non-null float64
B 100000 non-null object
C 100000 non-null datetime64[ns]
dtypes: datetime64[ns](1), float64(20), object(1)
memory usage: 17.5+ MB
附加
In [85]: def f1():
....: result = df
....: for i in range(9):
....: result = result.append(df)
....: return result
....:
的毗连
In [86]: def f2():
....: result = []
....: for i in range(10):
....: result.append(df)
....: return pd.concat(result)
....:
In [100]: f1().equals(f2())
Out[100]: True
In [101]: %timeit f1()
1 loops, best of 3: 1.66 s per loop
In [102]: %timeit f2()
1 loops, best of 3: 220 ms per loop
请注意,我甚至不愿意尝试预先分配。它有点复杂,特别是因为你正在处理多个dtypes(例如你可以制作一个巨大的框架而只是.loc
并且它会起作用)。但pd.concat
只是简单,可靠,快速。
从上面看你的尺码时间
In [104]: df = DataFrame(np.random.randn(2500,40))
In [105]: %timeit f1()
10 loops, best of 3: 33.1 ms per loop
In [106]: %timeit f2()
100 loops, best of 3: 4.23 ms per loop
答案 1 :(得分:4)
您没有为out_df2
指定任何数据或类型,因此它具有“对象”dtype。这使得为其分配值非常慢。指定float64 dtype:
out_df2 = pd.DataFrame(columns=np.arange(n_cols), index=np.arange(num_dfs*n_rows), dtype=np.float64)
你会看到一个戏剧性的加速。当我尝试时,method2
使用此更改的速度大约是method1
的两倍。
答案 2 :(得分:4)
@Jeff,addVal
赢了一英里!我使用<button type="button" onClick="addval(this)" name="opsional">Tambahkan</button>
和pd.concat
对第四种方法进行了基准测试。结果是明确的:
pd.concat
定义:
num_dfs = 500
在原始问题中使用相同的method4()
分析结果:
# Method 4 - us pd.concat on df_list
def method4():
return pd.concat(df_list, ignore_index=True)
Timer
方法比预先分配Total time for 100 repetitions of Method 1: 3679.334655 [sec]
Best time: 35.570036
Mean time: 36.793347
Total time for 100 repetitions of Method 2: 1569.917425 [sec]
Best time: 15.457102
Mean time: 15.699174
Total time for 100 repetitions of Method 3: 325.730455 [sec]
Best time: 3.192702
Mean time: 3.257305
Total time for 100 repetitions of Method 4: 25.448473 [sec]
Best time: 0.244309
Mean time: 0.254485
掌控者快13倍。
答案 3 :(得分:1)
杰夫的回答是正确的,但我发现我的数据类型另一个解决方案效果更好。
def df_():
return pd.DataFrame(['foo']*np.random.randint(100)).transpose()
k = 100
frames = [df_() for x in range(0, k)]
def f1():
result = frames[0]
for i in range(k-1):
result = result.append(frames[i+1])
return result
def f2():
result = []
for i in range(k):
result.append(frames[i])
return pd.concat(result)
def f3():
result = []
for i in range(k):
result.append(frames[i])
n = 2
while len(result) > 1:
_result = []
for i in range(0, len(result), n):
_result.append(pd.concat(result[i:i+n]))
result = _result
return result[0]
我的数据帧是单行且长度不一的 - 空条目必须与f3()成功的原因有关。
In [33]: f1().equals(f2())
Out[33]: True
In [34]: f1().equals(f3())
Out[34]: True
In [35]: %timeit f1()
357 ms ± 192 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [36]: %timeit f2()
562 ms ± 68.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [37]: %timeit f3()
215 ms ± 58.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
上述结果仍为k = 100,但对于较大的k,则更为显着。