我正在寻找一种能够生成/嵌入一个滑动的地图(即OpenStreetMaps)到Tkinter应用程序的能力,然后我可以在其上绘制地理坐标和椭圆数据(来自pyodbc连接到* .mdb文件)。用户需要地理信息(城市名称等)以进行更有效的分析。
我看过mapnik,Leaflet,pyrender,TileMill,TileStache等等,以促进这个梦想,但似乎没有一个真正适合这个法案。数据需要是交互式的(气球信息,可选择等)和动态的(当新的用户定义的sql解析数据以进行过滤时更新)。原因是,该程序的另一半是通过Tkinter和MatPlotLib运行的。我正在努力避免完整的系统大修。
非常感谢任何帮助我指明正确方向的帮助。
我的一些代码可在下面找到:
(我提前为任何错误或愚蠢而道歉。过去3个月我一直在用python写作......都是自学成才)
#!/usr/bin/env python
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg
import matplotlib.image as mpimg
from matplotlib.backend_bases import key_press_handler
from matplotlib.figure import Figure
from tkFileDialog import askopenfilename
from pylab import *
import tkMessageBox as mb
import pyodbc
import sys
import ttk
if sys.version_info[0] < 3:
import Tkinter as Tk
else:
import tkinter as Tk
def connect_db():
global c
conn = pyodbc.connect('DRIVER={Microsoft Access Driver (*.mdb)};DBQ=%s' % filename)
c = conn.cursor()
def query_db():
global time
global freq
global pri
global pw
freq=[]
time=[]
pri = []
pw = []
c.execute("SELECT utc_usec_time_stamp, freq_mhz, pri, pw FROM SampleData")
rows = c.fetchall()
for row in rows:
time.append(row[0])
freq.append(row[1])
pri.append(row[2])
pw.append(row[3])
progressbar.step(0.0008)
root.update_idletasks()
def plot():
global sb1
global sb2
global sb3
global canvas
f = Figure()
f.clf()
f.subplots_adjust(bottom=0.05,top=0.98,left=0.08,right=0.98,hspace=0.1)
sb1 = f.add_subplot(3,1,1)
sb1.scatter(time,freq)
setp(sb1.get_xticklabels(), visible=False)
sb1.set_ylabel("FREQ (MHz)")
sb2 = f.add_subplot(3,1,2, sharex=sb1)
sb2.scatter(time,pri)
setp(sb2.get_xticklabels(), visible=False)
sb2.set_ylabel("PRI (usec)")
sb3 = f.add_subplot(3,1,3, sharex=sb1)
sb3.scatter(time,pw)
setp(sb3.get_xticklabels(), visible=False)
sb3.set_xlabel("TIME")
sb3.set_ylabel("PW (usec)")
canvas = FigureCanvasTkAgg(f, master=root)
logo.pack_forget()
canvas.show()
canvas.get_tk_widget().pack(side=Tk.RIGHT, fill=Tk.BOTH, expand=1)
toolbar = NavigationToolbar2TkAgg( canvas, root )
toolbar.update()
canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
def test():
global pri
p = Tk.Toplevel(root)
f = Tk.Frame(p)
f.pack(side="top")
f.grid_rowconfigure(1, weight=1)
f.grid_columnconfigure(4, weight=1)
lbl = Tk.Label(f, text="label")
lbl.grid(row=1, column=1)
e = Tk.Entry(f)
e.grid(row=1, column=2)
b = Tk.Button(f, text="Button")
b.grid(row=1, column=3)
lbl2 = Tk.Label(f, text=" ")
lbl2.grid(row=1, column=4, padx=100)
fig = Figure()
sb1 = fig.add_subplot(1,1,1)
sb1.hist(pri)
canvas = FigureCanvasTkAgg(fig, master=p)
canvas.show()
canvas.get_tk_widget().pack(side=Tk.RIGHT, fill=Tk.BOTH, expand=1)
toolbar = NavigationToolbar2TkAgg( canvas, p )
toolbar.update()
canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
def __init__():
global root
global rmi
global rma
global prmi
global prma
global pwmi
global pwma
global pdf
global progressbar
global tf
global logo
root = Tk.Tk()
root.wm_title("Airborne Tactical Analysis System (ATLAS)")
root.wm_state('zoomed')
menubar = Tk.Menu(root)
File = Tk.Menu(menubar, tearoff=0)
File.add_command(label="Open", command=open)
File.add_separator()
File.add_command(label="Exit", command=_quit)
menubar.add_cascade(label="File", menu=File)
Options = Tk.Menu(menubar, tearoff=0)
Options.add_command(label="-Coming Soon-")
menubar.add_cascade(label="Options", menu=Options)
PlotData = Tk.Menu(menubar, tearoff=0)
PlotData.add_command(label="FREQ v PW")
PlotData.add_command(label="FREQ v PRI")
PlotData.add_command(label="PRI v PW")
PlotData.add_command(label="FREQ HISTOGRAM")
PlotData.add_command(label="PRI HISTOGRAM", command=test)
PlotData.add_command(label="PW HISTOGRAM")
menubar.add_cascade(label="Plot Data", menu=PlotData)
Geo = Tk.Menu(menubar, tearoff=0)
Geo.add_command(label="Generate Map")
menubar.add_cascade(label="Geo", menu=Geo)
root.config(menu=menubar)
pdf = Tk.Frame(borderwidth=1, relief="sunken")
pdf.pack(side="left", fill="y")
pdf.grid_rowconfigure(7, weight=1)
pdf.grid_columnconfigure(1, weight=1)
tf = Tk.Frame(borderwidth=1, relief="sunken")
tf.pack(side="bottom", fill="x")
progl = Tk.Label(text=" Processing: ")
progl.pack(in_=tf, side="left", ipady=10)
progressbar = ttk.Progressbar(orient='horizontal', length=200, mode='determinate')
progressbar.pack(in_=tf, side="left")
fl = Tk.Label(text="Current File:")
fl.pack(in_=tf, side="left", ipadx=10)
b1 = Tk.Button(pdf, text="Submit", command=filter_builder)
b1.grid(in_=pdf, row=2, columnspan=3, pady=10)
buf = Tk.Label(text=" ")
mil = Tk.Label(text="MIN")
mal = Tk.Label(text="MAX")
rfl = Tk.Label(text="RF:")
pwl = Tk.Label(text="PW:")
prl = Tk.Label(text="PRI:")
prmi = Tk.Entry()
prma = Tk.Entry()
pwmi = Tk.Entry()
pwma = Tk.Entry()
rmi = Tk.Entry()
rma = Tk.Entry()
buf.grid(in_=pdf, column=3,row=3)
mil.grid(in_=pdf, column=1,row=3, pady=4)
mal.grid(in_=pdf, column=2,row=3)
rfl.grid(in_=pdf, column=0,row=4)
rmi.grid(in_=pdf, column=1,row=4)
rma.grid(in_=pdf, column=2,row=4)
prl.grid(in_=pdf, column=0,row=5)
prmi.grid(in_=pdf, column=1,row=5)
prma.grid(in_=pdf, column=2,row=5)
pwl.grid(in_=pdf, column=0,row=6)
pwmi.grid(in_=pdf, column=1,row=6)
pwma.grid(in_=pdf, column=2,row=6)
photo = Tk.PhotoImage(file="image.gif")
logo = Tk.Label(image=photo)
logo.image = photo
logo.pack(side="top", fill="both", pady=100)
root.mainloop()
__init__()
答案 0 :(得分:1)
所以,经过大量的研究和修补(读作:深夜和挫折),我终于设计出了最佳方法:
1)利用mplleaflet,它利用matplotlib的绘图功能在一个滑动的地图上渲染数据点。这是我的前端(API)。
2)我偶然发现GitHub上的python-mbtiles实际上符合服务条款* .mbtiles png数据通过Tornado脱机。我操纵mplleaflet的网址指向我的本地主机端口,龙卷风在那里为瓷砖提供渲染。
3)完成两者之后,我意识到Tkinter无法以任何方式解析html,所以我最终将它们全部一起解压缩并使用功能更强大的PySide,因为它包含了我过去在GUI中包含它的QWebKit而不是实际的Web浏览器窗口。
总而言之,这是一个很长但很有启发性的过程。我希望其他人也可以从中吸取教训。