如何运行与大型3D阵列的相关性

时间:2015-07-27 01:49:52

标签: arrays r matrix correlation

首先,我有185个50x120 2D矩阵的文件。我将它放入一个大型阵列中(50x120x185)。此数组表示固定纬度(行)和经过185个月的经度(列)的测量值。我按如下方式制作了这个数组:

a  <- c(a199709,a199710..)
a <- array( a, dim = c( 50, 120, 185 )

然后我有另一个文件,其中185个观察了一个变量(随着时间的推移),我需要将这个文件与每个经度的每个纬度相关联(例如,第1列的第1行中的观察需要与之相关联)第二个文件的整个列表,通过阵列的185个月)并返回每个纬度经度组合的相关系数和p值(存储在另一个数据帧中)。 以下是数据外观的一小部分示例。大量的NaN然后是价值观。

0.77982613  0.43060419  NaN NaN NaN NaN 1.33500640  2.32644890  2.03347850  2.00072800  1.40690660  1.01990860  NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.39287550  1.61158960  2.27274490  1.91032030  2.45027570  1.35366430  NaN NaN NaN NaN NaN NaN NaN 1.2788333   1.1108858   0.7634852   0.5747378   0.5821554   0.7710934   NaN NaN NaN NaN NaN NaN 1.3938673   1.5590591   1.4409164   1.2314447   0.7270649   NaN 1.7521698   2.0494428   2.0483702   1.3953564   1.9457542   2.3045875   1.7193034   1.9769972   1.7394963   2.6089941   3.2412812   3.0550246   2.4335631   2.7291053   1.7492553   2.6199513   4.0112099   3.4542034   3.1224831   3.2304652   3.3102016   NaN NaN NaN

第二个文件只是对一个变量的185次观察。

                        0.122
                       -0.595
                       -1.9
                       -0.836
                        0.413
                        0.39
                        0.736
                        1.93

我很困惑我应该编写什么代码来循环通过并通过时间(从大数组)关联每个纬度和经度,然后返回相关系数和p值的2d数组。 我试过了

for (i in 1:length(a) ) {

但这是阵列的整体尺寸,而不是185个月。任何帮助将不胜感激

1 个答案:

答案 0 :(得分:4)

这可以通过apply()在行和列上完成,意味着超过边距1:2。

set.seed(1);
R <- 50; C <- 120; Z <- 185;
a <- array(rnorm(R*C*Z,3,1),c(R,C,Z));
othervar <- rnorm(Z,3,1);
cormatrix <- apply(a,1:2,cor,othervar);
dim(cormatrix);
## [1]  50 120
head(cormatrix);
##              [,1]          [,2]        [,3]        [,4]        [,5]         [,6]        [,7]        [,8]        [,9]       [,10]        [,11]        [,12]       [,13]        [,14]       [,15]        [,16]        [,17]       [,18]        [,19]       [,20]        [,21]        [,22]      [,23]         [,24]       [,25]        [,26]       [,27]        [,28]       [,29]        [,30]       [,31]       [,32]         [,33]       [,34]       [,35]       [,36]       [,37]        [,38]       [,39]         [,40]        [,41]       [,42]       [,43]        [,44]       [,45]        [,46]        [,47]       [,48]       [,49]       [,50]       [,51]        [,52]        [,53]       [,54]        [,55]         [,56]       [,57]       [,58]        [,59]        [,60]       [,61]       [,62]       [,63]        [,64]         [,65]        [,66]       [,67]        [,68]       [,69]         [,70]         [,71]       [,72]        [,73]       [,74]        [,75]       [,76]        [,77]        [,78]       [,79]        [,80]       [,81]        [,82]        [,83]        [,84]        [,85]        [,86]         [,87]      [,88]       [,89]        [,90]       [,91]         [,92]         [,93]       [,94]        [,95]        [,96]       [,97]       [,98]       [,99]      [,100]       [,101]      [,102]      [,103]      [,104]      [,105]       [,106]       [,107]       [,108]       [,109]     [,110]     [,111]      [,112]      [,113]      [,114]       [,115]      [,116]       [,117]      [,118]      [,119]       [,120]
## [1,]  0.009381754 -0.0006288594 -0.02453642  0.01673731 -0.08580716  0.007424671  0.06199350  0.05912027  0.14082117  0.03879647  0.055429523  0.019285143  0.04440028 -0.006815387  0.08206478 -0.042006557 -0.024248422 -0.02902434  0.159659672 -0.04683462  0.060717379  0.003758565 0.00798371 -0.0001347086 -0.03763708  0.123863894  0.04959017  0.012322157  0.05836862 -0.049110042 -0.05444975  0.08123221  0.0010390183  0.09420507 -0.03078082 -0.01005937 -0.01180137 -0.045123536  0.05101759 -0.1233930542 -0.008169935 -0.07497612  0.09433525 -0.006173357  0.09376699  0.016314593  0.165064512  0.11378452  0.02762109 -0.02527918 -0.22450064 -0.004495199  0.023877207 -0.06183121 -0.002866376  0.0772095130 -0.06255480 -0.09410189  0.052977233  0.046965820 -0.03446252 -0.13692147  0.06580713 -0.042757755 -0.0937777311 -0.021026699  0.12714381 -0.135192573 -0.05007639  0.0003690562  0.0514145914 -0.02731683 -0.032776316 -0.01940886  0.141988410 -0.12669081  0.019639301  0.028097019  0.12775140  0.045924380 -0.02178064 -0.003417877 -0.059169776 -0.083195329  0.004429876 -0.064323599 -0.1110889162 0.12716897 -0.08683802 -0.002588614 -0.08380587  0.0138280811  3.839420e-02 -0.08592716  0.113669987  0.132043915 -0.05482530 -0.02986897  0.01680328  0.01848973 -0.046684532 -0.02844949  0.01322101  0.07270310  0.01985113  0.070332797 -0.056422697  0.037771503 -0.006590428 0.06368096 0.10666286  0.07181643  0.04711943  0.04126084  0.039975691 -0.18649396 -0.007435666  0.09134351 -0.01207895  0.056075186
## [2,] -0.116331573  0.0923793446  0.07025621  0.11268953 -0.09341328 -0.029630250 -0.10947352 -0.04418272 -0.02807828  0.02386072  0.002132798 -0.110044112  0.01225501  0.006851830 -0.02492116  0.003820713 -0.008091216 -0.02768341  0.020127294 -0.03760861 -0.010413744  0.102326634 0.05705752  0.1338741184  0.01190489  0.064499415  0.01552671  0.005409726  0.01620343 -0.007525286 -0.04295918 -0.03339792 -0.0987456011 -0.01204685  0.05313332 -0.03670885  0.08404514  0.048243569 -0.05602869  0.0041083920 -0.032419558  0.03119497 -0.13121234  0.003364733 -0.01951595 -0.008756877 -0.080924051 -0.07556506 -0.02771641  0.03470183  0.03635250  0.040149390  0.055073590  0.01781694  0.046836610  0.0003702334 -0.11301121  0.14319014 -0.014519734  0.116535288  0.11733430  0.09013510 -0.05403307  0.083202752  0.0009623331 -0.109632519  0.02209232 -0.037161549 -0.09357348  0.0260104408  0.0090272967 -0.06379020  0.050145266 -0.05237282  0.017942495  0.03814418 -0.056380938  0.039966267  0.06690379  0.139621605 -0.07479738 -0.001722190 -0.036746808  0.027948845  0.015002796 -0.030443242 -0.0251480704 0.12064589  0.12480864  0.031388366  0.01932396 -0.1783950552  2.445045e-05 -0.03763376  0.035515719 -0.072368405  0.03268960  0.15731762 -0.04897443 -0.13659531  0.009366105 -0.04801242  0.04758195 -0.09133644 -0.15341346 -0.128054439  0.080262476  0.028192586  0.011979831 0.06192066 0.03126506  0.07221314  0.13785280  0.09589378 -0.017280999 -0.06492398  0.059438276  0.08610208 -0.01885071 -0.075813259
## [3,] -0.102779763 -0.0810640571 -0.14257037  0.21088393  0.02821457  0.085329936  0.08303306 -0.08939576 -0.02961662  0.11739539  0.033070762 -0.062070694  0.02723318 -0.027094699  0.10563542 -0.101945980 -0.009950677  0.04301568  0.005573301 -0.02248607  0.187906312 -0.064618262 0.11749309  0.0526250606  0.01181951  0.063567600 -0.08654828 -0.007813194  0.09730824 -0.010440006  0.01482364  0.10870742  0.0573522844 -0.10159761 -0.04079926  0.05757234  0.01011661 -0.006357944 -0.20295265 -0.0271283944  0.105756854  0.06759921  0.22116864 -0.037853189 -0.09691782  0.014576453 -0.003860806 -0.21512090  0.07048106  0.15220401 -0.02923885  0.093530898 -0.023258568  0.08264406 -0.111023329 -0.0256882537 -0.08900776 -0.14289892  0.077069740  0.007620468 -0.03785364 -0.09233717 -0.03708433 -0.071260896  0.0724121854  0.018853465 -0.01186706 -0.024372429  0.04993413  0.1119935009 -0.0364397975 -0.13710092  0.042246517  0.05872645  0.034436143 -0.03331243 -0.030615385 -0.001502851 -0.04515299  0.068611358 -0.03658459  0.070441802  0.054547108 -0.031624484  0.074951736  0.025191173 -0.0002129645 0.05184713  0.02844743  0.004697035  0.05577633  0.0007769113 -1.289537e-01  0.03873076  0.141705409  0.078895503  0.04495972  0.04231232  0.03509554  0.08910173  0.094258416  0.09223471 -0.01638219  0.07631080  0.07978185 -0.012828509  0.097169758  0.034969541  0.091304123 0.09350470 0.04893160  0.02954687  0.01797942 -0.05127672  0.022520253  0.03172993  0.068829318 -0.03097673 -0.12161914 -0.035660140
## [4,]  0.034063334  0.0097314666  0.01583056 -0.03374442 -0.04112704  0.059171305  0.09873172  0.03687629 -0.03268493 -0.13289716 -0.093629015 -0.041942331  0.04406162 -0.015892287 -0.09759957  0.013638675  0.050354306  0.08677888 -0.006438696  0.09563238 -0.019030147 -0.002390758 0.02089608  0.0282919993  0.07698305 -0.011491945  0.15267854  0.018407784 -0.07091455 -0.042939951  0.07557867 -0.05870813  0.0476818422  0.04835405 -0.05121245 -0.04302029  0.02072076 -0.077949484 -0.03696954 -0.0300763473 -0.075886704  0.25191587 -0.01497429 -0.100527767 -0.04890599  0.082095702  0.092025374 -0.01174520  0.05759299 -0.01065051  0.04471870  0.063831081 -0.004683291 -0.02114892  0.043876961  0.0061499728  0.03104001  0.02166661 -0.067751343  0.001920508 -0.07266827  0.03594379 -0.03354531  0.079411339 -0.1053571459 -0.090763333  0.17255371  0.145697279  0.02285522  0.1732643622  0.0233414511  0.01085483  0.193189843 -0.02279045 -0.106866864  0.07343425  0.006559500 -0.062983434  0.01360569  0.088738879  0.05449209 -0.050243711 -0.007191386  0.005578391 -0.065792727 -0.041335570 -0.0321043839 0.15366613 -0.03376157 -0.080949013 -0.10520406 -0.1540438495  1.202180e-01 -0.01378275 -0.026029433  0.007982372 -0.03608147  0.04599500 -0.03915497  0.03649365  0.052831627  0.14436730  0.06247427  0.15922006 -0.05527590 -0.007527601 -0.006620582 -0.013379888 -0.036986466 0.07118657 0.11029837 -0.04455502 -0.01448403 -0.06101502 -0.064451024  0.09564926 -0.009843696 -0.01630749  0.05907338 -0.007810817
## [5,] -0.044288139 -0.0110997734 -0.06559680 -0.08914721 -0.04631635  0.132700267  0.05714202 -0.07519090 -0.04480446 -0.03195851  0.082148695  0.131522150 -0.08575512  0.071334705  0.05621888 -0.040027759  0.045021192 -0.01297316  0.136030190 -0.04812070 -0.037371068 -0.057394117 0.07127473 -0.1104563646 -0.02178471  0.019443556  0.19149548 -0.024915375 -0.03628089  0.092284708  0.11933379  0.03566934 -0.0032188644  0.03256934  0.01175716 -0.03565773 -0.15554001 -0.023409479 -0.01648936  0.0006733765 -0.048372282  0.03360210 -0.05489893 -0.041976034  0.05810873 -0.025535840 -0.029097435  0.03767795  0.12470464 -0.04640887 -0.05615726 -0.123704401  0.064608047  0.07475996 -0.028435546 -0.0915745306 -0.01862307 -0.05528242 -0.081983776  0.126539999 -0.14603674 -0.03970420  0.03149141  0.009208772 -0.1267964371  0.093578063  0.05803233 -0.113644923  0.08979449  0.0524548642  0.0009302473 -0.01141730  0.076919927 -0.03641760 -0.002630968  0.11105552  0.008730732  0.036862054 -0.04384800 -0.020007532  0.06299397  0.006257206  0.049695572  0.068834075  0.079746655 -0.055885967  0.0213984546 0.03200625  0.06552619 -0.004536179 -0.01954207 -0.0632637692 -1.188454e-01 -0.09435444  0.005473028  0.174591160  0.15422706  0.05863548 -0.03145459  0.01162981  0.047044664 -0.02025591 -0.08145507 -0.07707113 -0.06886323  0.066444471 -0.008929386 -0.009307404  0.009424272 0.07567128 0.01266827 -0.07862022  0.06595594 -0.09976305 -0.020778930  0.06715604  0.217838581  0.06241611 -0.12645563 -0.080255300
## [6,] -0.024479219  0.0178104217 -0.02106269  0.11002586 -0.04927055 -0.090894778 -0.06596670 -0.11569483 -0.03700625 -0.13284595 -0.087097988 -0.006407736  0.01685949  0.134845289 -0.01042487 -0.098278399 -0.077533017 -0.03208775  0.036267238  0.02087152  0.008975871 -0.008328983 0.05764703 -0.1511975220  0.01133040 -0.006561614  0.01614919  0.055462546 -0.09065110 -0.002320140 -0.04828880  0.10405238 -0.0007716107 -0.03159428 -0.07151485  0.02780471 -0.04153880 -0.080730838  0.11666703 -0.1579183058 -0.129183340  0.03349451 -0.04357635  0.028409391  0.13877250 -0.038297925 -0.015317646  0.04537157 -0.10906119  0.11970577 -0.08789867 -0.082087011  0.059723946 -0.12802237  0.102845923 -0.0020856305 -0.13199336  0.07667642 -0.004878673 -0.058342448  0.07888365  0.03926886 -0.05096548  0.026496215 -0.1517316141  0.004113867  0.04985069  0.004478391  0.01196789 -0.0721750762 -0.0059740202  0.05486006 -0.005125651 -0.02943793 -0.059784830  0.00926545  0.017492250  0.110121551 -0.01140056 -0.008192348 -0.04803663  0.001858178 -0.078978844  0.128729019 -0.090863206  0.004975692 -0.0314191279 0.10578017 -0.06794299 -0.115434853 -0.11476294 -0.2008461259 -1.483347e-01  0.10069680 -0.026093548  0.017089295  0.01008518 -0.03079210 -0.03278922 -0.06956633  0.014104116 -0.11596993  0.10274567  0.05578534  0.11225170 -0.051697100  0.066064668  0.004772438 -0.071401849 0.02747507 0.02938896 -0.03833709 -0.06820718 -0.04680215  0.007572711 -0.04361055  0.179682576  0.06242033  0.08432312 -0.004680091

如果您运行cor.test()而不是cor(),您将获得一个归类为htest的列表矩阵,相关系数可在$estimate下访问,p值可在$p.value下访问:

cormatrix <- apply(a,1:2,cor.test,othervar);
dim(cormatrix);
## [1]  50 120
head(cormatrix);
##      [,1]   [,2]   [,3]   [,4]   [,5]   [,6]   [,7]   [,8]   [,9]   [,10]  [,11]  [,12]  [,13]  [,14]  [,15]  [,16]  [,17]  [,18]  [,19]  [,20]  [,21]  [,22]  [,23]  [,24]  [,25]  [,26]  [,27]  [,28]  [,29]  [,30]  [,31]  [,32]  [,33]  [,34]  [,35]  [,36]  [,37]  [,38]  [,39]  [,40]  [,41]  [,42]  [,43]  [,44]  [,45]  [,46]  [,47]  [,48]  [,49]  [,50]  [,51]  [,52]  [,53]  [,54]  [,55]  [,56]  [,57]  [,58]  [,59]  [,60]  [,61]  [,62]  [,63]  [,64]  [,65]  [,66]  [,67]  [,68]  [,69]  [,70]  [,71]  [,72]  [,73]  [,74]  [,75]  [,76]  [,77]  [,78]  [,79]  [,80]  [,81]  [,82]  [,83]  [,84]  [,85]  [,86]  [,87]  [,88]  [,89]  [,90]  [,91]  [,92]  [,93]  [,94]  [,95]  [,96]  [,97]  [,98]  [,99]  [,100] [,101] [,102] [,103] [,104] [,105] [,106] [,107] [,108] [,109] [,110] [,111] [,112] [,113] [,114] [,115] [,116] [,117] [,118] [,119] [,120]
## [1,] List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9
## [2,] List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9
## [3,] List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9
## [4,] List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9
## [5,] List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9
## [6,] List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9 List,9
cormatrix[[1,1]];
##
##   Pearson's product-moment correlation
##
## data:  newX[, i] and othervar
## t = 0.1269, df = 183, p-value = 0.8991
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1350697  0.1534427
## sample estimates:
##         cor
## 0.009381754
##
cormatrix[[1,1]]$estimate;
##         cor
## 0.009381754
cormatrix[[1,1]]$p.value;
## [1] 0.8991434