如果这是一个非常基本的问题/错误,我只是开始学习python并道歉。
我正在做Kaggle生物反应教程。我收到此错误
C:\阿纳康达\ lib中\站点包\ sklearn \ cross_validation.py:65: DeprecationWarning:不推荐使用indices参数 删除(假设为True)在0.17 stacklevel = 1)结果:0.458614231133
任何人都知道这意味着什么?我把它谷歌死了,找不到答案。
我正在运行的脚本是:
from sklearn.ensemble import RandomForestClassifier
from sklearn import cross_validation
import logloss
import numpy as np
def main():
#read in data, parse into training and target sets
dataset = np.genfromtxt(open('train.csv','r'), delimiter=',', dtype='f8')[1:]
target = np.array([x[0] for x in dataset])
train = np.array([x[1:] for x in dataset])
#In this case we'll use a random forest, but this could be any classifier
cfr = RandomForestClassifier(n_estimators=100)
#Simple K-Fold cross validation. 5 folds.
#(Note: in older scikit-learn versions the "n_folds" argument is named "k".)
cv = cross_validation.KFold(len(train), n_folds=5, indices=False)
#iterate through the training and test cross validation segments and
#run the classifier on each one, aggregating the results into a list
results = []
for traincv, testcv in cv:
probas = cfr.fit(train[traincv], target[traincv]).predict_proba(train[testcv])
results.append( logloss.llfun(target[testcv], [x[1] for x in probas]) )
#print out the mean of the cross-validated results
print "Results: " + str( np.array(results).mean() )
if __name__=="__main__":
main()
我相信这是在说:
__author__ = 'nickd'
import scipy as sp
def llfun(act, pred):
epsilon = 1e-15
pred = sp.maximum(epsilon, pred)
pred = sp.minimum(1-epsilon, pred)
ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
ll = ll * -1.0/len(act)
return ll
再一次,如果这是基本的东西真的很抱歉。我以前从未这样做过。
答案 0 :(得分:5)
这意味着您使用indices
关键字参数调用cross_validation.KFold
,以后的版本将不支持它:
cv = cross_validation.KFold(len(train), n_folds=5, indices=False)
根据错误消息,indices=True
的效果为0.17。该消息表明他们将删除关键字参数,可能他们不会忽略未使用的关键字参数,因此,如果您继续尝试传入索引,可能会在0.17中获得TypeError
异常。
答案 1 :(得分:1)
这意味着indices
参数不再使用,可能会在sklearn
的未来版本中删除。警告是为了让您有机会调整代码(即,不要通过indices
参数),这样您的代码在将来的更新中删除后就不会中断。