基本GSL示例程序出错 - 简单非线性拟合

时间:2015-07-24 19:28:31

标签: c gsl nonlinear-optimization

我刚刚在我的窗口框上设置了GSL,我正在尝试学习如何使用非线性拟合函数。我做的第一件事是直接从他们的网站上取一个例子:https://www.gnu.org/software/gsl/manual/html_node/Example-programs-for-Nonlinear-Least_002dSquares-Fitting.html

在这里:

#include <stdlib.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdio.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_multifit_nlin.h>
#define N 40
#define FIT(i) gsl_vector_get(s->x, i)
#define ERR(i) sqrt(gsl_matrix_get(covar,i,i))

struct data {
    size_t n;
    double * y;
    double * sigma;
};

int expb_f (const gsl_vector * x, void *data, gsl_vector * f)
{
    size_t n = ((struct data *)data)->n;
    double *y = ((struct data *)data)->y;
    double *sigma = ((struct data *) data)->sigma;

    double A = gsl_vector_get (x, 0);
    double lambda = gsl_vector_get (x, 1);
    double b = gsl_vector_get (x, 2);

    size_t i;

    for (i = 0; i < n; i++)
    {
        /* Model Yi = A * exp(-lambda * i) + b */
        double t = i;
        double Yi = A * exp (-lambda * t) + b;
        gsl_vector_set (f, i, (Yi - y[i])/sigma[i]);
    }

    return GSL_SUCCESS;
}

int expb_df (const gsl_vector * x, void *data, gsl_matrix * J)
{
    size_t n = ((struct data *)data)->n;
    double *sigma = ((struct data *) data)->sigma;

    double A = gsl_vector_get (x, 0);
    double lambda = gsl_vector_get (x, 1);

    size_t i;

    for (i = 0; i < n; i++)
    {
        /* Jacobian matrix J(i,j) = dfi / dxj, */
        /* where fi = (Yi - yi)/sigma[i],      */
        /*       Yi = A * exp(-lambda * i) + b  */
        /* and the xj are the parameters (A,lambda,b) */
        double t = i;
        double s = sigma[i];
        double e = exp(-lambda * t);
        gsl_matrix_set (J, i, 0, e/s);
        gsl_matrix_set (J, i, 1, -t * A * e/s);
        gsl_matrix_set (J, i, 2, 1/s);
    }
    return GSL_SUCCESS;
}

int expb_fdf (const gsl_vector * x, void *data, gsl_vector * f, gsl_matrix * J)
{
    expb_f (x, data, f);
    expb_df (x, data, J);

    return GSL_SUCCESS;
}


void print_state (size_t iter, gsl_multifit_fdfsolver * s);

int main (void)
{
    const gsl_multifit_fdfsolver_type *T;
    gsl_multifit_fdfsolver *s;
    int status;
    unsigned int i, iter = 0;
    const size_t n = N;
    const size_t p = 3;

    gsl_matrix *covar = gsl_matrix_alloc (p, p);
    double y[N], sigma[N];
    struct data d = { n, y, sigma};
    gsl_multifit_function_fdf f;
    double x_init[3] = { 1.0, 0.0, 0.0 };
    gsl_vector_view x = gsl_vector_view_array (x_init, p);
    const gsl_rng_type * type;
    gsl_rng * r;

    gsl_rng_env_setup();

    type = gsl_rng_default;
    r = gsl_rng_alloc (type);

    f.f = &expb_f;
    f.df = &expb_df;
    f.fdf = &expb_fdf;
    f.n = n;
    f.p = p;
    f.params = &d;

  /* This is the data to be fitted */

    for (i = 0; i < n; i++)
    {
        double t = i;
        y[i] = 1.0 + 5 * exp (-0.1 * t) + gsl_ran_gaussian (r, 0.1);
        sigma[i] = 0.1;
        printf ("data: %u %g %g\n", i, y[i], sigma[i]);
    };
    T = gsl_multifit_fdfsolver_lmsder;
    s = gsl_multifit_fdfsolver_alloc (T, n, p);
    gsl_multifit_fdfsolver_set (s, &f, &x.vector);

    print_state (iter, s);

    do
    {
        iter++;
        status = gsl_multifit_fdfsolver_iterate (s);

        printf ("status = %s\n", gsl_strerror (status));

        print_state (iter, s);

        if (status)
        break;

        status = gsl_multifit_test_delta (s->dx, s->x,
                                        1e-4, 1e-4);
    }
    while (status == GSL_CONTINUE && iter < 500);
    gsl_multifit_covar (s->J, 0.0, covar);
    {
        double chi = gsl_blas_dnrm2(s->f);
        double dof = n - p;
        double c = GSL_MAX_DBL(1, chi / sqrt(dof));

        printf("chisq/dof = %g\n",  pow(chi, 2.0) / dof);

        printf ("A      = %.5f +/- %.5f\n", FIT(0), c*ERR(0));
        printf ("lambda = %.5f +/- %.5f\n", FIT(1), c*ERR(1));
        printf ("b      = %.5f +/- %.5f\n", FIT(2), c*ERR(2));
    }

    printf ("status = %s\n", gsl_strerror (status));

    gsl_multifit_fdfsolver_free (s);
    gsl_matrix_free (covar);
    gsl_rng_free (r);
    return 0;
}

void print_state (size_t iter, gsl_multifit_fdfsolver * s)
{
    printf ("iter: %3u x = % 15.8f % 15.8f % 15.8f "
          "|f(x)| = %g\n",
          iter,
          gsl_vector_get (s->x, 0),
          gsl_vector_get (s->x, 1),
          gsl_vector_get (s->x, 2),
          gsl_blas_dnrm2 (s->f));
}

理想情况下,它应该简单地生成一个短数据集,该数据集遵循衰减指数,顶部有一些白噪声,然后适合它。

为了让它在Windows中的Code :: Blocks中运行,我遵循了此处概述的过程:installing GSL on Windows XP 32bit for use with codeblocks

即使使用-Wall和-Wextra标志,它也会在没有警告的情况下进行编译。但是,它在gsl_multifit_fdfsolver_set (s, &f, &x.vector);行上失败,错误为:multifit\fdfsolver.c:132: ERROR: vector length does not match solver. Default GSL error handler invoked.

我有点惊讶地发现这应该是原始示例代码,但我们在这里。所以我希望有一个比我能告诉我这个简单例子我做错了什么更有见识的人。

1 个答案:

答案 0 :(得分:0)

想出来:他们错误地分配了他们的初始向量。固定代码在这里:

#include <stdlib.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdio.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_multifit_nlin.h>
#define N 40
#define FIT(i) gsl_vector_get(s->x, i)
#define ERR(i) sqrt(gsl_matrix_get(covar,i,i))

struct data {
    size_t n;
    double * y;
    double * sigma;
};

int expb_f (const gsl_vector * x, void *data, gsl_vector * f)
{
    size_t n = ((struct data *)data)->n;
    double *y = ((struct data *)data)->y;
    double *sigma = ((struct data *) data)->sigma;

    double A = gsl_vector_get (x, 0);
    double lambda = gsl_vector_get (x, 1);
    double b = gsl_vector_get (x, 2);

    size_t i;

    for (i = 0; i < n; i++)
    {
        /* Model Yi = A * exp(-lambda * i) + b */
        double t = i;
        double Yi = A * exp (-lambda * t) + b;
        gsl_vector_set (f, i, (Yi - y[i])/sigma[i]);
    }

    return GSL_SUCCESS;
}

int expb_df (const gsl_vector * x, void *data, gsl_matrix * J)
{
    size_t n = ((struct data *)data)->n;
    double *sigma = ((struct data *) data)->sigma;

    double A = gsl_vector_get (x, 0);
    double lambda = gsl_vector_get (x, 1);

    size_t i;

    for (i = 0; i < n; i++)
    {
        /* Jacobian matrix J(i,j) = dfi / dxj, */
        /* where fi = (Yi - yi)/sigma[i],      */
        /*       Yi = A * exp(-lambda * i) + b  */
        /* and the xj are the parameters (A,lambda,b) */
        double t = i;
        double s = sigma[i];
        double e = exp(-lambda * t);
        gsl_matrix_set (J, i, 0, e/s);
        gsl_matrix_set (J, i, 1, -t * A * e/s);
        gsl_matrix_set (J, i, 2, 1/s);
    }
    return GSL_SUCCESS;
}

int expb_fdf (const gsl_vector * x, void *data, gsl_vector * f, gsl_matrix * J)
{
    expb_f (x, data, f);
    expb_df (x, data, J);

    return GSL_SUCCESS;
}


void print_state (size_t iter, gsl_multifit_fdfsolver * s);

int main (void)
{
    const gsl_multifit_fdfsolver_type *T;
    gsl_multifit_fdfsolver *s;
    int status;
    unsigned int i, iter = 0;
    const size_t n = N;
    const size_t p = 3;

    gsl_matrix *covar = gsl_matrix_alloc (p, p);
    double y[N], sigma[N];
    struct data d = { n, y, sigma};
    gsl_multifit_function_fdf f;
    gsl_vector *x = gsl_vector_alloc(p);
    for (i=0; i<p; i++)
    {
        gsl_vector_set(x,i,i==0 ? 1 : 0);
    }
    const gsl_rng_type * type;
    gsl_rng * r;

    gsl_rng_env_setup();

    type = gsl_rng_default;
    r = gsl_rng_alloc (type);

    f.f = &expb_f;
    f.df = &expb_df;
    f.fdf = &expb_fdf;
    f.n = n;
    f.p = p;
    f.params = &d;

  /* This is the data to be fitted */

    for (i = 0; i < n; i++)
    {
        double t = i;
        y[i] = 1.0 + 5 * exp (-0.1 * t) + gsl_ran_gaussian (r, 0.1);
        sigma[i] = 0.1;
        printf ("data: %u %g %g\n", i, y[i], sigma[i]);
    };
    T = gsl_multifit_fdfsolver_lmsder;
    s = gsl_multifit_fdfsolver_alloc (T, n, p);
    gsl_multifit_fdfsolver_set (s, &f, x);

    print_state (iter, s);

    do
    {
        iter++;
        status = gsl_multifit_fdfsolver_iterate (s);

        printf ("status = %s\n", gsl_strerror (status));

        print_state (iter, s);

        if (status)
        break;

        status = gsl_multifit_test_delta (s->dx, s->x,
                                        1e-4, 1e-4);
    }
    while (status == GSL_CONTINUE && iter < 500);
    gsl_multifit_covar (s->J, 0.0, covar);
    {
        double chi = gsl_blas_dnrm2(s->f);
        double dof = n - p;
        double c = GSL_MAX_DBL(1, chi / sqrt(dof));

        printf("chisq/dof = %g\n",  pow(chi, 2.0) / dof);

        printf ("A      = %.5f +/- %.5f\n", FIT(0), c*ERR(0));
        printf ("lambda = %.5f +/- %.5f\n", FIT(1), c*ERR(1));
        printf ("b      = %.5f +/- %.5f\n", FIT(2), c*ERR(2));
    }

    printf ("status = %s\n", gsl_strerror (status));

    gsl_multifit_fdfsolver_free (s);
    gsl_matrix_free (covar);
    gsl_rng_free (r);
    gsl_vector_free(x);
    return 0;
}

void print_state (size_t iter, gsl_multifit_fdfsolver * s)
{
    printf ("iter: %3u x = % 15.8f % 15.8f % 15.8f "
          "|f(x)| = %g\n",
          iter,
          gsl_vector_get (s->x, 0),
          gsl_vector_get (s->x, 1),
          gsl_vector_get (s->x, 2),
          gsl_blas_dnrm2 (s->f));
}