如何获得有关cv :: Stitcher失败的更多信息

时间:2015-07-23 19:22:49

标签: c++ opencv camera-calibration homography

我有两个正在俯视方形物体的相机,我想拍摄这两个图像并将它们组合起来得到一个(大约)代表整个区域的图像。

我的两个相机的视图看起来像这样:

Two camera images.

左图像的左边缘应与右图像的右边缘缝合,黑色虚线是它们重叠的点。

我的第一次尝试是使用本教程中的技术将图像拼接在一起:

http://ramsrigoutham.com/2012/11/22/panorama-image-stitching-in-opencv/

#include <stdio.h>
#include <iostream>

#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/imgproc/imgproc.hpp"

using namespace cv;

void readme();

/** @function main */
int main( int argc, char** argv )
{
 if( argc != 3 )
 { readme(); return -1; }

// Load the images
 Mat image1= imread( argv[2] );
 Mat image2= imread( argv[1] );
 Mat gray_image1;
 Mat gray_image2;
 // Convert to Grayscale
 cvtColor( image1, gray_image1, CV_RGB2GRAY );
 cvtColor( image2, gray_image2, CV_RGB2GRAY );

imshow("first image",image2);
 imshow("second image",image1);

if( !gray_image1.data || !gray_image2.data )
 { std::cout<< " --(!) Error reading images " << std::endl; return -1; }

//-- Step 1: Detect the keypoints using SURF Detector
 int minHessian = 400;

SurfFeatureDetector detector( minHessian );

std::vector< KeyPoint > keypoints_object, keypoints_scene;

detector.detect( gray_image1, keypoints_object );
 detector.detect( gray_image2, keypoints_scene );

//-- Step 2: Calculate descriptors (feature vectors)
 SurfDescriptorExtractor extractor;

Mat descriptors_object, descriptors_scene;

extractor.compute( gray_image1, keypoints_object, descriptors_object );
 extractor.compute( gray_image2, keypoints_scene, descriptors_scene );

//-- Step 3: Matching descriptor vectors using FLANN matcher
 FlannBasedMatcher matcher;
 std::vector< DMatch > matches;
 matcher.match( descriptors_object, descriptors_scene, matches );

double max_dist = 0; double min_dist = 100;

//-- Quick calculation of max and min distances between keypoints
 for( int i = 0; i < descriptors_object.rows; i++ )
 { double dist = matches[i].distance;
 if( dist < min_dist ) min_dist = dist;
 if( dist > max_dist ) max_dist = dist;
 }

printf("-- Max dist : %f \n", max_dist );
 printf("-- Min dist : %f \n", min_dist );

//-- Use only "good" matches (i.e. whose distance is less than 3*min_dist )
 std::vector< DMatch > good_matches;

for( int i = 0; i < descriptors_object.rows; i++ )
 { if( matches[i].distance < 3*min_dist )
 { good_matches.push_back( matches[i]); }
 }
 std::vector< Point2f > obj;
 std::vector< Point2f > scene;

for( int i = 0; i < good_matches.size(); i++ )
 {
 //-- Get the keypoints from the good matches
 obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
 scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
 }

// Find the Homography Matrix
 Mat H = findHomography( obj, scene, CV_RANSAC );
 // Use the Homography Matrix to warp the images
 cv::Mat result;
 warpPerspective(image1,result,H,cv::Size(image1.cols+image2.cols,image1.rows));
 cv::Mat half(result,cv::Rect(0,0,image2.cols,image2.rows));
 image2.copyTo(half);
 imshow( "Result", result );

 waitKey(0);
 return 0;
 }

/** @function readme */
 void readme()
 { std::cout << " Usage: Panorama < img1 > < img2 >" << std::endl; }

不幸的是,这会导致错误(始终如一):

Debug Assertion Failed! Program: ....\VC\include\xmemory0 Line 106 Expression "(_Ptr_user & (_BIG_ALLOCATION_ALIGNMENT -1)) == 0" && 0

调用堆栈指示在调用std::_Deallocate<cv::KeyPoint>期间发生这种情况 - 可能是在关键点向量被释放时。

毋庸置疑,图像拼接失败。

我尝试过使用cv::Stitcher类,但我得到了同样的错误。

如何尝试将图像拼接在一起并获取有关失败的方式或原因的信息?

1 个答案:

答案 0 :(得分:0)

尝试使用cv::Stitcher这样的方式,这是将图像互相扭曲的最简单方法:

#include <iostream>

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/stitching/stitcher.hpp>

int main(int argc, char** argv)
{
    cv::Mat img1 = cv::imread("image1.jpg");
    cv::Mat img2 = cv::imread("image2.jpg");

    if (img1.empty() || img2.empty())
    {
        return -1;
    }

    std::vector<cv::Mat> imgs;
    imgs.push_back(img1);
    imgs.push_back(img2);
    // push more images here ...

    cv::Mat panoramic;
    cv::Stitcher stitcher = cv::Stitcher::createDefault(true);
    stitcher.stitch(imgs, panoramic);

    cv::imshow("Result", panoramic);
    cv::waitKey(0);

    return 0;
}