我试图创建一个算法,它将在有序列表中的某些点之前,之后和之间计算几个计数。在这里,我的"某些要点"是需要附加到x值和有序的y值。以下是我试图做的简单说明。
x = [2,3,5,6,7,9]
y = [1,4,10]
# appending y to x and ordering gives us:
full_list = [1,2,3,4,5,6,7,9,10]
因此,对于y = 1,通过将full_list切片为非编程方式计算度量标准:
num_between_before = len(full_list[0:0])
0
num_between_after = len(full_list[0:4])
2
num_before = len(full_list[0:0])
0
num_after = len(full_list[0:9])
8
但当然我试图以编程方式为任何列表x执行此操作,这些列表始终是数字,任何列表y也始终是数字。 x和y都可以是任何大小,但len(y) 以编程方式输出可能如下所示: 显然我到目前为止在我的代码中遇到了麻烦:# y_val: (num_between_before, num_between_after, num_before, num_after)
output:
1: (0, 2, 0, 8)
4: (2, 4, 3, 5)
10: (4, 0, 8, 0)
x = [1434684599341,1434684606154,1434684607190,1434684613843,1434684677605,
1434684704358,1434684708727,1434684724495,1434684758413,1434684782632]
y = [1434471725039, 1434684613844, 1434684708728, 1434684782633]
y.sort()
for i in y:
x.append(i)
x.sort()
idx = []
for j in y:
idx.append(x.index(j))
counter = 0
for i, k in zip(idx, y):
counter += 1
if i == 0:
before = len(x[i:i])
after = len(x[i:conv_index[counter]]) - 1
print before, after
elif i == idx[-1]:
before = len(x[i-counter:idx[counter-1]]) - 1
after = len(x[i:i])
print before, after
else:
before = len(x[i:idx[counter]])
after = len(x[i:idx[counter]]) - 1
print before, after
答案 0 :(得分:1)
如果我关注你,我认为这有效:
def allCounts(x,y):
z = x+y
z.sort()
d = {}
for i in y:
d[i] = z.index(i)
counts = {}
for i,j in enumerate(y):
if i == 0:
counts[j] = (0,d[y[i+1]]-d[j]-1,d[j],len(z)-d[j]-1)
elif i < len(y) - 1:
counts[j] = (d[j]-d[y[i-1]]-1,d[y[i+1]]-d[j]-1,d[j],len(z)-d[j]-1)
else:
counts[j] = (d[j]-d[y[i-1]]-1,0,d[j],len(z)-d[j]-1)
return counts
使用您的测试数据:
>>> x = [2,3,5,6,7,9]
>>> y = [1,4,10]
>>> c = allCounts(x,y)
>>> c
{1: (0, 2, 0, 8), 10: (4, 0, 8, 0), 4: (2, 4, 3, 5)}
答案 1 :(得分:0)
您可以使用bisect_left
,bisect_right
来获取必要的索引:
#!/usr/bin/env python
from bisect import bisect
x = [2,3,5,6,7,9]; x.sort()
y = [1,4,10]; y.sort()
# appending y to x and ordering gives us:
z = sorted(x + y)
x_indices = [0] + [bisect(x, yy) for yy in y] + [len(x)]
z_indices = [1] + [bisect(z, yy) for yy in y] + [len(z)]
for i, yy in enumerate(y):
print('{}: {}'.format(yy, (x_indices[i+1] - x_indices[i],
x_indices[i+2] - x_indices[i+1],
z_indices[i+1] - z_indices[0],
z_indices[-1] - z_indices[i+1])))
1: (0, 2, 0, 8)
4: (2, 4, 3, 5)
10: (4, 0, 8, 0)