我需要减少R中数组的长度(概括)。例如,我有像这样的高分辨率数据......
my_array=array(c(sample(0:9,32, replace=TRUE)), dim=c(4,4,2))
> my_array
, , 1
[,1] [,2] [,3] [,4]
[1,] 2 1 8 2
[2,] 3 5 4 6
[3,] 2 8 9 6
[4,] 1 0 9 9
, , 2
[,1] [,2] [,3] [,4]
[1,] 3 7 9 7
[2,] 9 4 9 8
[3,] 8 6 7 8
[4,] 7 6 9 9
...我需要使用像这样的平均函数将其“推广”到低分辨率:
, , 1
[,1] [,2]
[1,] 2.75 4.00
[2,] 2.75 8.25
, , 2
[,1] [,2]
[1,] 5.75 8.25
[2,] 6.75 8.25
简单地说,原始数组的4个值(位置[1,1]; [1,2]; [2,1]; [2,2])在[1中的结果数组中形成1个值(平均值) 1]位置。我尝试在数组上使用“apply”,但我无法应对“非标准”边距。是否有更复杂的功能,如在R?中应用?
答案 0 :(得分:2)
我想对此发表评论,但我没有足够的声誉,所以我在这里发表评论。
我发现了类似的问题和回答here。
根据我找到的答案,您的问题的解决方案可能是:
my_array=array(c(sample(0:9,32, replace=TRUE)), dim=c(4,4,2))
my_array
rmean <- array(c(matrix(0,2,2),matrix(0,2,2)),dim=c(2,2,2)) # result array
for (i in 1:2){
for (j in 1:2){
for (k in 1:2){
rmean[,,k][i, j] <- mean(my_array[,,k][c(-1,0) + 2 * i, c(-1,0) + 2 * j])
}
}
}
rmean
结果:
> my_array
, , 1
[,1] [,2] [,3] [,4]
[1,] 8 4 4 9
[2,] 0 7 9 5
[3,] 2 7 2 6
[4,] 9 5 8 6
, , 2
[,1] [,2] [,3] [,4]
[1,] 2 1 4 7
[2,] 3 7 0 6
[3,] 2 8 9 3
[4,] 7 9 1 9
> rmean
, , 1
[,1] [,2]
[1,] 4.75 6.75
[2,] 5.75 5.50
, , 2
[,1] [,2]
[1,] 3.25 4.25
[2,] 6.50 5.50
答案 1 :(得分:1)
这是一个非常类似于@crwang改编的解决方案,但概括为一个函数:
reduceMatrix <- function(x, rown, coln, fun = mean, ...) {
out <- matrix(NA, nrow=nrow(x)/rown, ncol=ncol(x)/coln)
for (i in 1:(nrow(x)/rown)) {
for (j in 1:(ncol(x)/coln)) {
indi <- c(rown*i-1, rown*i)
indj <- c(coln*j-1, coln*j)
out[i, j] <- fun(x[indi, indj], ...)
}
}
out
}
该函数适用于二维数组,因此您可以在my_array
的第三维上应用它们:
set.seed(10)
my_array <- array(c(sample(0:9,32, replace=TRUE)), dim=c(4,4,2))
lapply(seq_len(dim(my_array)[3]),
function(a) reduceMatrix(my_array[,,a], 2, 2))
[[1]]
[,1] [,2]
[1,] 2.5 4.0
[2,] 3.5 4.5
[[2]]
[,1] [,2]
[1,] 4.00 5.25
[2,] 5.25 3.75
这种方法的想法是有一个函数可以用于独立矩阵(在3D数组,列表等中),也可以更容易地选择行数(rown
)和列({{ 1}})要汇总,以及应用函数(coln
,mean
,median
)和其他参数(例如sum
)。